赣州稀土矿业有限公司稀土矿山整合(二期)技改项目环境影响报告书一全南县矿区(征求意见稿)

建设单位: 赣州稀土矿业有限公司

评价单位: 矿冶科技集团有限公司

二〇二二年三月

目 录

1 概述	1
1.1 建设项目的基本情况	1
1.2 建设项目的特点	2
1.3 环境影响评价的主要过程	3
1.4 分析判定相关情况	3
1.5 关注的主要环境问题及环境影响	5
1.6 环境影响报告书的主要结论	8
2 总论	9
2.1 编制依据	9
2.2 评价目的、原则	14
2.3 评价时段、评价对象、评价重点	15
2.4 环境影响识别与评价因子筛选	15
2.5 环境功能区划	17
2.6 评价等级	20
2.7 评价范围	23
2.8 评价标准	25
2.9 环境保护目标	31
3 现有工程回顾性评价	35
3.1 现有工程基本情况	35
3.2 现有工程组成	38
3.3 现有工程分析	38
3.4 现有矿区环境质量及存在问题	44
3.5 "以新带老"措施	45
4 整合(二期)技改项目工程分析	49
4.1 整合(二期)技改项目基本概况	49
4.2 工程基本情况	49
4.3 矿区范围及资源特征	50
4.4 项目组成	55

4.5 项目总	体布局及占地	60
4.6 主要技	术经济指标	62
4.7 原地浸	矿采矿工艺	62
4.8 富集站	处理工艺	69
4.9 公辅工	程	71
4.10 物料平	P衡分析	73
4.11 污染源	原分析	77
5 环境概况		92
5.1 矿区地	理位置	92
5.2 自然环	境概况	92
5.3 区域污	染源	93
6区域环境质量		95
6.1 环境空	气质量现状	95
6.2 地表水	环境质量现状	95
6.3 底泥环:	境质量现状	98
6.4 声环境	质量现状	99
6.5 土壤环	境现状调查与评价	99
7 大气环境影响	月分析	105
7.1 主要气	候统计资料	105
7.2 环境空	气影响分析	105
8 地表水环境影	/响评价	108
8.1 全南矿	区地表水系及其小流域	108
8.2 项目取	水可靠性分析	109
8.3 正常情報	况对地表水影响分析	110
8.4 无组织	泄漏情况对地表水环境影响分析	110
8.5 项目对,	周边水源地的影响	116
8.6 地表水	环境影响评价结论	116
9 土壤环境影响]评价	120
9.1 原地浸	矿采场土壤环境影响分析	120

9.2	富集站土壤环境影响分析	.123
9.3	临时弃土场土壤环境影响分析	.124
9.4	土壤环境保护措施与对策	124
9.5	评价结论	.124
10 声环均	竟影响预测	.128
10.1	主要噪声源及源强	128
10.2	声环境关心点分析	128
10.3	声环境影响预测	128
10.4	. 声环境影响分析	130
11 固体原	麦物影响分析	131
11.1	固体废物产生量和处置量	131
11.2	固体废物属性	.132
11.3	固体废物贮存场符合性分析	.132
11.4	. 固体废物贮存场环境影响分析	133
11.5	小结	134
12 生态环	不境影响评价	.135
12.1	生态环境现状调查与评价	.135
12.2	生态环境影响评价	145
12.3	生态环境恢复措施	.155
13 环境原	风险影响分析	162
13.1	风险识别	162
13.2	环境风险事故情形分析及预测	164
13.3	风险防范措施	169
13.4	- 事故应急预案	.171
13.5	5 小结	173
14 施工基	期环境影响分析	.175
14.1	本项目施工概况	.175
14.2	施工期主要污染源及防治措施	.177
14 3	施丁期环境影响分析	178

14.4 施工期环境管理	182
14.5 小结	182
15 环境保护措施及其可行性论证	185
15.1 环保措施概述	185
15.2 设计阶段环保措施	185
15.3 施工阶段环保措施	186
15.4 生产阶段环保措施	186
15.5 闭矿阶段污染控制措施	194
15.6 服务期满后的环保措施	194
15.7 环保投资估算	195
16 放射性影响分析	197
16.1 监测布点	197
16.2 监测因子与频次	197
16.3 执行标准	197
16.4 监测结果	197
17 政策规划符合性分析	198
17.1 产业政策符合性分析	198
17.2 规划符合性分析	201
17.3 "三线一单"相符性分析	204
18 环境管理与监测计划	206
18.1 环境管理	206
18.2 监测计划	209
18.3 "三同时"验收	212
19 经济损益分析	216
19.1 环境经济损益分析	216
19.2 经济效益分析	219
19.3 社会效益分析	219
19.4 小结	219
20 结论	221

20.1 工程概况	221
20.2 评价区环境质量现状	221
20.3 环境影响分析	222
20.4 污染防治措施	226
20.5 达标排放与总量控制	230
20.6 评价总结论	230
20.7 建议	230

1 概述

1.1 建设项目的基本情况

赣州稀土矿业有限公司(以下简称"赣州稀土")成立于 2005 年 1 月,注册 资本 7 亿元,涵盖稀土开采、分离、贸易、研发等领域,主要经营产品包括稀 土原矿、稀土氧化物、稀土合金等。

赣州稀土拟将赣州市 88 本稀土采矿许可证整合成 44 本采矿许可证,整合 后矿区总面积 193.267km², 其中包括 19 个整合矿区及 25 个非整合矿区,整合 矿区涉及到8个资源县的63本采矿许可证,分两期进行。整合项目(一期)包 括龙南县和定南县稀土矿权的整合,整合(二期)技改项目包括宁都县、赣县 区、信丰县、安远县、全南县及寻乌县稀土矿权的整合。整合项目(一期)已 于 2013 年 10 月 28 日获得原环境保护部的环境影响报告书批复(环审[2013]270 号)。一期整合后,为实现节约利用资源和有效保护环境相得益彰,赣州稀土开 展"绿色"的离子型稀土提取工艺的科学研究工作。2016年以来,赣州稀土以南 方离子型稀土矿山为研究对象, 在现有的原地浸矿研究基础上, 对离子型稀土 矿山地质结构、新型浸矿剂等稀土提取工艺进行重点攻关, 开发了一套具有自 主知识产权的"硫酸镁浸矿—氧化镁富集"开采工艺体系(以下简称"无铵工 艺"),该工艺可以有效提高稀土综合回收率,最大程度的回收高价值的铽镝稀 土配分,同时可以从源头上减轻目前的氨氮污染问题,实现资源利用和有效保 护环境的相统一。因此, 赣州稀土 2019 年 10 月委托中国恩菲工程技术有限公 司对整合项目(一期)开展技改项目环境影响评价,将原硫酸铵浸矿工艺技改 为硫酸镁浸矿的无铵工艺,矿山整合(一期)技改项目已于 2020 年 11 月 4 日 获得赣州市行政审批局的环境影响报告书批复(赣市行审证(1)字[2020]170 号)。

矿山整合(一期)及技改项目完成后,赣州稀土拟开展稀土矿山整合(二期)技改项目,江西省工业和信息化厅以"赣工信有色[2021]14号"批复了项目核准。整合(二期)技改项目涉及的矿区包括宁都县、赣县区、信丰县、安远县、全南县及寻乌县下属 40个稀土矿山,整合为 29个稀土矿山。其中 12个矿山由于矿区下游的环境敏感保护目标众多、当地重点项目规划要求或采矿证内资源贫乏等原因,本次整合项目暂无法利用其资源储量,不包含在本次评价范

围内,具体包括:宁都县大沽稀土矿、赣县大田稀土矿、湖新稀土矿、吉埠稀土矿、田村稀土矿、阳埠稀土矿、信丰县油坑稀土矿、桐木稀土矿、安远县古田稀土矿、牛皮碛稀土矿、车头稀土矿、寻乌县南桥下廖稀土矿共 12 个非整合矿山。

因此,剔除暂无法利用资源储量的矿山后,本次整合(二期)技改项目包括 17 个稀土矿山,整合后的稀土矿山分别为: 宁都县 1 个(黄陂稀土矿),赣县 2 个(大埠稀土及韩坊稀土矿),信丰县 5 个(赤岗稀土矿、窑下稀土矿、虎山稀土矿、烂泥坑稀土矿、安西稀土矿),安远县 4 个(涂屋一稀土矿、涂屋二稀土矿、铜罗窝稀土矿、蔡坊岗下稀土矿),全南县 2 个(长城稀土矿、玉坑稀土矿),寻乌县 3 个(双茶亭稀土矿、园墩背稀土矿、柯树塘稀土矿)。

整合(二期)技改项目 17个矿山的矿区总面积为 75.3155km², 其中全南县矿区总面积约 6.2331km²。全南县整合后矿山保有矿石量为***kt,TREO 量为***t,SREO 量为***t。设计利用矿石量***kt,TREO 量为***t。本项目共建设富集站 6 个,其中 2 个富集站利用现有水冶车间进行改造,其余全部新建,所有富集站分批次错时改造或建设,第一批启动改造并生产的富集站 4 个,其余车间接替式启动建设生产。项目采用无铵工艺,以硫酸镁为浸矿剂,原地浸矿工艺采矿,浸矿母液送至富集站采用氧化镁进行沉淀获得稀土富集物。

1.2 建设项目的特点

本次整合(二期)技改项目涉及的矿山均为全覆式,均采用原地浸矿生产工艺、"集液巷道+导流孔+集液沟+环保回收井"的收液系统。原地浸矿采场主要工程内容包括高位池、注液孔、注液管网、集液巷道、导流孔、集液沟、母液收集池、环保回收井、监测井、内部避水沟、外部排水沟、表土堆场、临时弃土场等。注液孔采用菱形布置,排距 3.0m、孔距 2.0m,孔径 180mm,孔深以见矿 1~1.5m 为准。集液巷道布设于矿体下盘,巷道间距 15~20m,巷道断面为梯形,巷道内垂直巷道走向方向布设 2 层导流孔,层距 0.3m,孔距 0.5m,交错布置。在矿体的山脚下,沿矿体边界挖一条集液沟,沟宽约 0.3~0.5m,深约 0.3~0.5m,母液经集液巷道和导流孔汇流到集液沟,再经集液沟自流到母液收集池,通过管道输送至富集站处理。集液巷道、导流孔、集液沟、母液收集池

底部及侧壁采用水泥砂浆防渗。

原地浸矿采场产生的母液,经管道输送至富集站采用氧化镁进行沉淀,沉淀后即获得产品稀土富集物。富集站主要包括浸出液中转池、富集池、配液池、产品池、氧化镁浆液池、硫酸池、压滤包装间、仓库等。池体依据山坡呈梯段布置。各工艺池的池底和池壁采用防渗材料防渗,渗透系数要求等效黏土防渗层厚度≥6m、K≤1.0×10⁻⁷cm/s 或参照 GB18598 执行。

1.3 环境影响评价的主要过程

根据《中华人民共和国环境影响评价法》、《建设项目环境影响评价分类管理名录》(2021 年版),本项目属于"七、有色金属矿采选业 09"中"稀有稀土金属矿采选 093",应编制环境影响报告书。

根据《生态环境部审批环境影响评价文件的建设项目目录(2019 年本)》(公告 2019 年第 8 号)、《赣州市审批环境影响评价文件的建设项目目录(2019 年本)》等的有关规定,本项目属于"稀土矿山开发项目",应报至赣州市生态环境局审批。

2021年7月,赣州稀土矿业有限公司委托矿治科技集团有限公司承担该项目的环境影响评价工作。在接到委托后,评价单位成立了项目组,开展了现场踏勘,收集了项目所在地的自然环境、开发利用方案、可行性研究报告等资料,开展了环境质量现状监测、区域现状和污染源调查等工作,收集了建设单位在龙南足洞和定南木子山两个矿块开展的无铵工艺试验数据等资料。在此基础上,我公司编制完成了《赣州稀土矿业有限公司稀土矿山整合(二期)技改项目环境影响报告书》。

在环境影响报告书的编制过程中,建设单位赣州稀土矿业有限公司按照《环境影响评价公众参与办法》的要求,于 2021 年 7 月 28 日起在赣州稀土矿业有限公司网站上开展了第一次环评信息公示,公示了项目的基本情况、建设单位及评价单位的联系方式、公众意见表及提交意见表的方式和途径。

1.4 分析判定相关情况

1)产业政策符合性

本项目符合《国务院关于促进稀土行业持续健康发展的若干意见》的要求,符合《稀土行业规范条件》的要求,本项目采用原地浸矿工艺,赣州稀土

矿业有限公司已经获得国家稀土开采总量控制指标,不属于《产业结构调整指导目录》(2019 年本)限制类及淘汰类,未采用《矿产资源节约与综合利用鼓励、限制和淘汰技术目录》(国土资发[2014]176 号)中限制和淘汰类技术,符合相关产业政策要求。

2) 规划符合性

本项目符合《稀土行业发展规划(2016-2020 年)》、江西省及赣州市国民经济和社会发展第十四个五年规划和二 O 三五年远景目标纲要的要求,符合《全国矿产资源规划(2016-2020 年)》、《江西省矿产资源总体规划(2016-2020年)》、《江西省"十四五"生态环境保护规划》、《赣州市"十四五"生态环境保护规划》。

3)"三线一单"符合性分析

(1) 生态保护红线

根据全南县自然资源局出具的复函,全南县玉坑稀土矿、长城稀土矿矿区范围均不在生态保护红线范围内。

(2) 环境质量底线

本次评价收集了评价区域的环境空气质量现状数据,开展了地表水、地下水、土壤、底泥、噪声的环境质量现状监测,现状监测结果表明,矿区内的环境空气、底泥、土壤、声环境质量均满足相应质量标准要求,地表水中氨氮超标,超标原因与历史开采有关,地下水中氨氮、pH 值超标,超标与历史开采、原生地质条件及规模化畜禽养殖、农业化肥有关。

本项目制定了严格的环境保护措施,富集站及原地浸矿采场生产废水全部 回用不外排,设置了多级收液系统及地下水监控措施,收液巷道、导流孔、集 液沟、母液收集池等均采取了防渗措施,各类固体废物均得到了合理安全处置,制定了施工期及运营期、闭矿期生态保护措施,项目采用无铵浸矿工艺,地下水超标问题可以得到缓解,根据预测结果,项目运行不会对周边环境造成大的影响,不突破环境质量底线。

(3)资源利用上线

本项目对稀土资源的开采指标严格遵循自然资源部、工业和信息化部和江西省国土资源厅逐层分解下达的稀土矿开采总量控制指标,工程对稀土资源的

利用不会超过资源利用上线。富集站在原有位置新建或改造,生产用水来自周边地表水体,不突破资源利用上线。

(4) 负面清单

本项目不属于《产业结构调整指导目录》(2019 年本)限制类及淘汰类, 不属于《江西省产业结构调整导向目录》中的限制类及淘汰类,未列入环境准 入负面清单。

综上,本项目符合"三线一单"要求。

1.5 关注的主要环境问题及环境影响

本项目为离子型稀土矿山开采项目,采用无铵原地浸矿生产工艺,本次评价重点关注的问题为采矿引起的地下水、地表水、生态、土壤及环境风险等。

1) 地表水

矿山在正常生产情况下,母液处理环节产生的沉淀池上清液、压滤车间压滤废水等全部回收利用,正常情况下矿山生产废水不外排。矿山生产人员较少,不设生活区,仅在倒班宿舍有少量生活污水,在倒班宿舍设置化粪池,生活污水用作农肥和绿化用水,不外排。正常生产过程中不可避免会有极少部分母液渗漏,母液渗漏下渗进入地下水,采场地下水和地表水水力联系紧密,部分地下水通过径流间接汇至采区下游地表水,正常生产过程在确保采场收液系统和环保回收井(水力截获)运行良好情况下,渗漏率可以控制在7.5%以内。

本项目生产用水及生活用水均从矿山附近溪流取水,经过分析,各矿区周边地表水溪流水量充足,水质较好,可满足本项目生产及生活用水需求;渗漏母液进入周边地表水体经完全混合后,全部满足《地表水环境质量标准》(GB3838-2002)III类标准要求,不会对周边地表水环境造成明显不利影响。

2) 地下水

经模型预测,稀土矿区开采过程中对地下水中污染物浓度随着时间的推移,地下水中污染物浓度超标范围先逐渐增大,随后超标范围逐渐变小,全部矿块开采结束闭矿后,污染物对地下水影响较小。

通过分析开采矿块内观测点浓度变化趋势,得出如下结论:①受不同时间 点稀土矿块开采的影响,各特征点污染物的变化由未受开采影响到开采过程快 速上升,矿块开采完毕后又呈指数性降低的变化趋势。②某些特征点污染物浓 度则受到不同时间段开采矿块的叠加影响,出现多个浓度峰值。

经模型预测,稀土矿区开采过程中对地下水中污染物浓度随着时间的推移,地下水中污染物浓度的超标范围逐渐增大,随后逐渐减小。采取清水淋洗+环保回收后的超标及影响范围均小于仅采取清水淋洗的面积;污染物浓度随时间变化趋势同清水淋洗情况。

3) 生态

项目施工期主要为富集站、管线工程以及其它辅助设施的建设,富集站及辅助设施的建设将使被占用土地利用类型发生改变,草地、林地等转变为工矿用地。这些工程的建设会导致局部景观发生改变,地表植被的铲除或压占将会改变局部区域内的生态景观类型与格局;同时,区域植被覆盖面积的减少,引起生物量短期内减少;局部地表土壤产生扰动,短期内也会造成一定的水土流失。表土堆存场、临时弃土场的建设可能破坏局部地表植被,相应地引起土壤侵蚀量的增加,剥离的表土堆放和开挖出的土方堆放也会压占地表植被,若堆放区边坡不采取防护措施,可能造成一定的水土流失。

项目运营期原地浸矿采场按计划分矿体进行浸矿,开采完的原地浸矿采场及时复垦,矿山处于不断建设新采场和不断复垦旧采场的过程中,同一时间矿体表面的植被破坏面积相比原地浸矿采场总破坏面积较小。矿山集液巷道建设产生的土方堆放在临时弃土场中。在土方堆积过程中,其土地利用类型也随之发生变化,原来的林地等转变为工矿用地。土方在堆放过程中,若堆放坡度较大且没有采取相应的水土保持措施,则会对下游生态环境产生影响。表土堆存场、临时弃土场的建设可能引起局部区域地表形态的改变,原本的汇水途径也因此受到影响。矿山生产结束后,直接的生态破坏活动将停止。但矿山开采对生态环境造成的破坏影响将持续,为了减轻这种影响,需要开展矿山的土地复垦工作,来逐步恢复矿区生态环境。

项目运营项目共计占用土地面积 372.37hm²。原地浸矿采场主要是开挖注液孔破坏土地,主要破坏的是灌草植被,单个注液孔面积约为 0.025m²,按 2m×2m 的间隔布置注液孔,每公顷土地破坏植被面积约为 0.00625hm²。在原地浸矿完成后,及时对采场开展植被恢复工作,以使土地利用结构能得到一定程度的恢复。每年采场实际破坏土地的面积远远小于占地总面积,通过采场复垦

及时工作的开展,各年实际破坏植被面积相对较小。运营期占地为矿块开采临时占用林地等。逐年滚动开采各矿块,均为临时占用。各矿块开采时间约1年,第2年复垦。总体上,对原地浸矿采场采取边开采边复垦的措施情况下,矿山运营期原地浸矿采场的建设对土地利用结构影响较小。

原地浸矿采场分年开采,植被逐步破坏,环评要求运营期原地浸矿采场完成采矿计划后并完成清水清洗后,立即进行复垦工作,恢复地表植被,每年实际的生物损失量将得到一定程度的恢复。

此外,占地范围内多为本地区常见植物种类,没有濒危珍稀野生植物,不会造成濒危珍稀野生植物种群数量的锐减或灭绝。因此,工程对本区域的植物 多样性不会产生显著影响。

运营期主要是原地浸矿采场及设施对评价区内现有的景观生态类型造成影响,原地浸矿采场在建设时只是需要在地表进行打孔作业,布设管道。各注液孔间隔较大,在打孔作业时避开树木;管道可拆除,基本不破坏地表植被,因此原地浸矿采场作业基本上不改变原有的景观类型,并且对原有景观类型影响较小。原地浸矿采场采矿结束后进行复垦工作恢复为原有景观类型;在运营期中,部分原地浸矿采场是处在采矿期,部分是处在复垦期,在同一时间的破坏面积实际上远远小于原地浸矿采场总面积,因此原地浸矿采场对景观格局影响较小。

项目闭矿后,通过采取生态恢复措施,原地浸矿采场参照原土地利用类型,以自然恢复为主,注液孔回填,局部地区补栽灌木,林下撒播草籽。车间最终复垦为林地,表土堆存场和临时弃土场堆存期临时恢复为草地,最终弃土取走后复垦为林地,项目对生态的影响较小。

4) 土壤

原地浸矿采场生产不会对采场表层土壤造成不利影响,采取清水清洗措施后,不会造成明显酸化和盐化影响。富集站生产期间采取防渗等环保措施后,正常生产情况下不向周边土壤排放污染物质,不会对土壤造成明显酸化和盐化影响。临时弃土场临时贮存集液巷道和集液沟、母液收集池等施工产生无法回填的废弃土石,但堆存岩土为风化层岩土,并及时对弃土进行复垦,临时弃土场不会对周边环境造成明显不利影响。

5) 环境风险

事故性泄漏包括富集站池体事故泄漏、母液管线破损事故泄漏两种事故情况,发生泄漏事故情况下,富集站池体泄漏绝大部分流域不会产生明显不利影响。母液管线泄漏则会对绝大多数周边流域产生明显影响。因此,应采取措施防止事故性排放污染物进入周边地下水体中。硫酸储罐周边设置围堰,当发生硫酸泄漏事故时,应立即采取有效应急措施,对其影响加以控制,能有效降低硫酸泄漏对环境造成的影响。为防止事故性排放污染物污染地表水体,矿山应制定风险应急预案以应对事故性泄漏。对事故性泄漏风险建立三级防控体系,即一级防控为车间级、二级防控为矿区级、三级防控为流域级。

1.6 环境影响报告书的主要结论

赣州稀土矿业有限公司稀土矿山整合(二期)技改项目符合国家产业政策,工艺技术先进合理,厂址位置符合当地发展规划和环保要求。在采取本评价报告所提出的各项环保措施后,工程所造成的环境空气、地表水、地下水、噪声、土壤环境影响均不超标,生态影响可控,对周边环境影响较小。从环境保护的角度分析,本项目建设可行。

报告书编制过程中,得到了赣州市生态环境局、全南生态环境局等各级环保部门的热情指导、建设单位赣州稀土矿业有限公司及监测单位江西省钨与稀土产品质量监督检验中心(江西省钨与稀土研究院)的大力配合,在此一并致谢。

2 总论

2.1 编制依据

2.1.1 国家法律、法规、部门规章及规范性文件

- (1) 《中华人民共和国环境保护法》, 2015年1月1日起施行;
- (2) 《中华人民共和国矿产资源法》,2009年8月27日修订;
- (3) 《中华人民共和国水污染防治法》,2017年6月27日第二次修正;
- (4)《中华人民共和国固体废物污染环境防治法》,2020年4月29日修订,2020年9月1日起施行;
 - (5) 《中华人民共和国环境噪声污染防治法》,2018年12月29日修订;
 - (6) 《中华人民共和国土壤污染防治法》,2019年1月1日起施行;
 - (7) 《中华人民共和国大气污染防治法》,2018年10月26日修订;
 - (8) 《中华人民共和国水土保持法》, 2011年3月1日起施行;
 - (9) 《中华人民共和国环境影响评价法》, 2018年12月29日修订;
 - (10) 《中华人民共和国节约能源法》, 2018年10月26日修订:
 - (11) 《中华人民共和国清洁生产促进法》, 2012年7月1日起施行:
 - (12) 《中华人民共和国水法》, 2016年7月2日修订:
 - (13) 《中华人民共和国土地管理法》,2020年1月1日起施行;
- (14) 《中华人民共和国森林法》, 2019年12月28日修正, 2020年7月1日起施行;
 - (15) 《中华人民共和国循环经济促进法》,2018年10月26日修订;
- (16)《建设项目环境保护管理条例》,国务院令第 682 号,2017 年 10 月 1日起施行:
- (17) 《建设项目环境影响评价分类管理名录(2021年版)》,生态环境部令第16号,2020年11月30日发布,自2021年1月1日起施行;
- (18)《环境影响评价公众参与办法》,生态环境部令第 4 号,2019 年 1 月 1 日施行;
 - (19) 《中华人民共和国放射性污染防治法》,2003年10月1日起实施;
 - (20) 《中华人民共和国野生动物保护法》,2018年10月26日修订;

- (21) 《土地复垦条例》, 2011年3月5日起实施;
- (22)《产业结构调整指导目录(2019年本)》(2021年修订),中华人民 共和国国家发展和改革委员会令第49号,2021年12月30日施行;
- (23) 国家发展改革委、商务部关于印发《市场准入负面清单(2019 年版)》的通知,发改体改[2019]1685号;
- (24)《关于进一步加强环境影响评价管理防范环境风险的通知》,环境保护部,环发[2012]77号;
- (25)《关于切实加强环境影响评价监督管理工作的通知》,环办[2013]104号;
- (26)《国务院关于印发大气污染防治行动计划的通知》,国发[2013]37号,2013年9月2日:
- (27)《国务院关于印发水污染防治行动计划的通知》,国发[2015]17号, 2015年4月2日;
- (28)《国务院关于印发土壤污染防治行动计划的通知》,国发[2016]31号,2016年5月28日;
- (29)《国务院关于印发打赢蓝天保卫战三年行动计划的通知》,国发 [2018]22号,2018年6月27日;
- (30)《关于切实加强风险防范严格环境影响评价风险管理的通知》,环发[2012]98号;
- (31)《关于以改善环境质量为核心加强环境影响评价管理的通知》,环环评[2016]150号;
- (32)《建设项目环境保护事中事后监督管理办法(试行)》,环发[2015]163号;
- (33)《矿山生态环境保护与污染防治技术政策》,环发[2005]109号, 2005年9月7日;
- (34)《国家重点保护野生动物名录》,国家林业河草原局、农业农村部公告 2021 年第 3 号, 2021 年 2 月 5 日;
- (35)《国家重点保护野生植物名录》,国家林业河草原局、农业农村部公告 2021 年第 15 号, 2021 年 8 月 7 日;

- (36)《国务院关于全面整顿和规范矿产资源开发秩序的通知》,国发[2005]28号;
- (37)《国土资源部关于全国整顿和规范矿产资源开发秩序重点矿区的通知》,国土资源部公告 2006 年第 28 号, 2006 年 10 月 20 日;
- (38)《国务院办公厅转发国土资源部等部门对矿产资源开发进行整合意见的通知》,国办发[2006]108号,2006年12月31日;
 - (39) 《全国生态环境保护纲要》, 国发[2000]38号, 2000年11月26日;
 - (40) 《全国生态功能区划》, 修编版 2015 年 11 月 13 日;
- (41)环境保护部、发展改革委、财政部《关于加强国家重点生态功能区环境保护与管理的意见》,环发[2013]16号;
- (42)国土资源部联合工信部、财政部、环保部、国家能源局共同发布 《关于加强矿山地质环境恢复和综合治理的指导意见》,国土资发[2016]63号;
- (43) 《矿山生态环境保护与恢复治理技术规范(试行)》(HJ 651-2013), 2013年7月23日;
- (44) 国土资源部关于印发《矿产资源节约与综合利用鼓励、限制和淘汰 技术目录(修订稿)》的通知,国土资发[2014]176号;
- (45)《稀土行业规范条件(2016年本)》和《稀土行业规范条件公告管理办法》公告,中华人民共和国工业和信息化部公告2016年第31号,2016年7月1日实施;
- (46)《国务院关于促进稀土行业持续健康发展的若干意见》,国发 [2011]12号,2011年5月10日;
- (47) 国土资源部关于贯彻落实《国务院关于促进稀土行业持续健康发展的若干意见》的通知,国土资发[2011]105号,2011年7月24日;
- (48)《稀土矿产资源合理开发利用"三率"指标要求(试行)》,国土资源部,2013年12月30日;
- (49)生态环境部关于发布《矿产资源开发利用辐射环境监督管理名录》的公告,生态环境部公告 2020 第 54 号,2020 年 11 月 24 日;

2.1.2 地方法律、法规及文件

(1) 《江西省环境污染防治条例》,2009年1月1日施行;

- (2)《江西省大气污染防治条例》,2016年12月1日江西省第十二届人民 代表大会常务委员会第二十九次会议通过,自2017年3月1日起施行;
- (3)《江西省人民政府贯彻国务院关于加强城市供水节水和水污染防治工作的通知》, 赣府发[2001]6号;
- (4)《江西省人民政府关于印发江西省土壤污染防治工作方案的通知》, 赣府发[2016]50号,2016年12月26日;
- (5)《江西省人民政府关于印发江西省水污染防治工作方案的通知》,赣 府发[2015]62号,2015年12月;
- (6)《江西省人民政府关于印发江西省主体功能区规划的通知》,赣府发 [2013]4号;
- (7)《关于加强涉及防护距离建设项目环境影响评价管理工作的通知》, 赣环评字[2011]第 274 号;
- (8)《江西省人民政府关于印发江西省落实大气污染防治行动计划实施细则的通知》, 赣府发[2013]41号;
- (9)《江西省人民政府关于发布江西省生态保护红线的通知》, 赣府 [2018]21号;
- (10) 《江西省地表水环境功能区划》, 江西省环境保护局 2006[28]号, 2006年7月;
 - (11) 《江西省矿产资源管理条例》, 2015年5月28日;
- (12)《江西省保护性开采的特定矿种管理条例》,江西省人民代表大会常务委员会公告第52号,2004年11月26日;
- (13)《关于转发江西省矿产资源开发秩序开发整合总体方案的通知》,江西省人民政府办公厅,赣府厅[2007]76号,2007年5月31日;
- (14)《江西省生态公益林管理办法》,江西省人民政府令第 172 号, 2009 年 8 月 1 日;
- (15) 江西省人民政府办公厅关于印发江西省打赢蓝天保卫战三年行动计划(2018~2020年)的通知,赣府厅字[2018]37号,2018年4月23日;
- (16) 江西省人民政府关于加快实施"三线一单"生态环境分区管控的意见, 赣府发[2020]17号, 2020年8月19日;

- (17) 赣州市人民政府关于印发赣州市"三线一单"生态环境分区管控方案的通知,赣市府字[2020]95号,2020年12月31日;
 - (18) 赣州市审批环境影响评价文件的建设项目目录(2019年本);

2.1.3 技术导则、技术规范

- (1) 《环境影响评价技术导则 总纲》(HJ2.1-2016);
- (2) 《环境影响评价技术导则 大气环境》(HJ2.2-2018);
- (3) 《环境影响评价技术导则 地表水环境》(HJ2.3-2018);
- (4) 《环境影响评价技术导则 地下水环境》(HJ610-2016);
- (5) 《环境影响评价技术导则 声环境》(HJ2.4-2009);
- (6) 《环境影响评价技术导则 生态影响》(HJ 19-2011);
- (7) 《环境影响评价技术导则 土壤环境(试行)》(HJ964-2018);
- (8) 《建设项目环境风险评价技术导则》(HJ169-2018);

2.1.4 相关规划

- (1) 《江西省矿产资源总体规划(2016~2020》;
- (2) 《稀土行业发展规划(2016~2020年)》;
- (3)《江西省国民经济和社会发展第十四个五年规划和二 O 三五年远景目标纲要》;
- (4)《赣州市国民经济和社会发展第十四个五年规划和二 O 三五年远景目标纲要》:
 - (5) 《全国矿产资源规划(2016-2020年)》;
 - (6)《赣州市"十四五"生态环境保护规划》;
 - (7) 《江西省"十四五"生态环境保护规划》。

2.1.5 项目相关资料

- (1)《赣州稀土矿山整合(二期)技改项目可行性研究报告》,赣州稀土矿业有限公司,2021年9月;
- (2)《江西省全南县长城矿区稀土矿资源储量核实报告》,赣州南方稀土 资源有限公司,2012年5月;
 - (3)《江西省全南县玉坑矿区稀土矿资源储量核实报告》,赣州稀土矿业

有限公司, 2012年5月:

- (4)《赣州市废弃稀土矿山环境恢复治理中期评估报告》,北京中环博宏 环境资源科技有限公司,2019年7月:
- (5)《赣州稀土矿业有限公司长城稀土矿矿产资源开发利用、地质环境恢复治理与土地复垦方案》,赣州稀土矿业有限公司,2020年3月;
- (6)《赣州稀土矿业有限公司玉坑稀土矿矿山地质环境恢复治理与土地复垦方案》,赣州稀土矿业有限公司,2022年3月;
- (7)《全南稀土矿环境水文地质勘查报告》,核工业赣州工程勘察院, 2014年7月。

2.2 评价目的、原则

2.2.1 评价目的

为了实施可持续发展战略,预防因工程建成后对环境造成不良影响,促进 经济、社会和环境的协调发展。从发展生产、同时保护环境出发,从环境保护 角度论证项目建设生产工艺技术的先进性、布局合理性,规定污染防治及生态 保护措施,对项目建设的可行性提出结论和建议。为环境保护主管部门提供决 策依据,为建设过程中和投产后的环境管理提供科学依据。

2.2.2 评价原则

- (1) 贯彻执行国家环保法规,做到环评为项目建设服务,为环境管理服务。
- (2) 注重环评工作的科学性、客观性、公正性、实用性,深度和方法符合 环境影响评价相关技术导则的要求,确保环评工作的质量。
- (3) 贯彻科学发展观、清洁生产、总量控制、达标排放的原则,确保污染物达标排放,最大限度地削减工程的污染物排放量和保护生态环境。
 - (4) 以可持续发展和循环经济理念为指导,尽最大可能回收利用资源。
- (5)评价工作力求针对性强、技术可行、经济合理、重点突出,符合国家 产业政策、区域发展规划和环境保护规划。
- (6) 在保证环评质量的前提下,充分利用区域已有环境、工程的监测、调查、实验数据等资料,对缺少的资料进行必要的监测。

2.3 评价时段、评价对象、评价重点

项目评价时段分为施工期、运营期及服务期满 3 个阶段。项目评价对象包括原地浸矿采场、富集站、环保措施和公辅工程等。评价重点:根据工程内容、生产工艺特点、污染物特征及生态破坏特征,结合评价区的环境特征,确定本次评价重点为地下水环境影响评价、地表水环境影响评价、生态环境影响评价、土壤环境影响评价、环境风险评价等内容。

2.4 环境影响识别与评价因子筛选

为了解掌握项目对所在地的环境影响,进而确定工程环境影响评价的内容 及重点,首先根据区域环境功能的要求与特征,结合工程的生产工艺和污染物 排放特点,对工程环境影响因素进行识别,在掌握环境影响因素的基础上,进 一步筛选出评价因子。

2.4.1 环境影响因素识别

对项目施工期、运营期及服务期满后可能对周边环境的影响进行识别,见**表 2.1**。

环境要素	污染环节	原地浸矿	富集站	临时弃土场
	环境空气	_	_	_
	地表水			
	地下水	1		
施工期	声环境			
	生态	_	_	_
	土壤			
	固体废物	_		
	环境空气			_
	地表水	*	*	
	地下水	*	*	
运营期	声环境			
	生态			_
	土壤	*	*	
	固体废物			
服务期满后	地表水	_		
从方列例/口	地下水	_		

表 2.1 环境影响因素识别

注:表中"一"代表对环境的负影响及影响程度;"*"代表事故状态下的环境影响

从表 2.1 中可以看出,本项目在施工期、运营期和服务期满后影响周围环境的因素主要有地下水、地表水、土壤,其次是生态环境、固体废物、环境空

气、声环境及事故引起的环境风险影响等。各时期主要影响因素为:

- (1)施工期影响:施工废水及生活污水对水环境的影响;矿山在施工开挖注液孔、集液巷道、导流孔时产生粉尘、运输车辆产生的扬尘等对环境空气的影响;施工机械设备产生的噪声对声环境的影响;开挖土方、生活垃圾等固体废物对环境的影响。
- (2)运营期影响:主要是原地浸矿采场渗漏对地下水、地表水、土壤环境的影响,集液巷道掘进弃土堆存对生态环境的影响,原地浸矿注液孔施工对生态环境的影响;富集站清洗尾水处理产生污泥;生产过程中设备运转产生的噪音对声环境的影响等。
- (3) 服务期满后:主要是原地浸矿采场残留浸矿剂对地下水和地表水环境影响。

2.4.2 评价因子筛选

在识别出主要环境影响因素的基础上,根据项目的特点及区域环境质量现状,污染物排放特征,确定本项目评价因子,见表 2.2。

	Was N N Ed J MAG			
类别	项目	评价因子		
大		PM ₁₀ , PM _{2.5} , SO ₂ , NO ₂ , CO, O ₃		
大气环境	影响评价	/		
地表水	现状评价	pH、高锰酸盐指数、COD、BOD ₅ 、氨氮、总磷、铜、锌、铅、砷、镉、铬(六价)、汞、氰化物、氟化物、氯化物、硝酸盐、硫酸盐、硫化物、石油类、粪大肠菌群、镁、钙、总硬度、溶解性总固体、全盐量		
	影响评价	镁、硫酸盐		
河流底泥	现状评价	pH、铜、铅、锌、镉、铬、砷、汞、镍		
地下水	现状评价	K+、Na+、Ca²+、Mg²+、CO₃²-、HCO₃-、Cl⁻、SO₄²-、pH 值、溶解性总固体、总硬度、耗氧量、氨氮、硝酸盐(以氮计)、 亚硝酸盐(以氮计)、挥发性酚类、氰化物、硫化物、铅、 砷、汞、镉、铬(六价)、氟化物、铁、锰、铜、锌		
	影响评价	镁、硫酸盐		
土壤	建设用地:《土壤环境质量建设用地土壤污染风险管 (试行)》(GB 36600-2018)中基本项目 45 项+氨氮 盐、镁、锌、铬、pH、含盐量(SSC),共 52 項			
	影响评价	pH、镁、硫酸盐、含盐量		
声环境	现状评价	$L_{eq}(A)$		
产小児	影响评价	$L_{eq}(A)$		
固体废物	污染源	表土、废弃土石方(弃土)、污泥、生活垃圾等		

表 2.2 评价因子筛选

类别	项目	评价因子		
	影响分析			
生态环境	现状调查与评价 影响评价	植被、土地利用、景观、水土流失		
环境风险	现状调查与评价 影响评价	母液池体泄漏、管道泄漏、硫酸储罐破裂		

2.5 环境功能区划

2.5.1 地表水

根据《江西省地表水功能区划》(2006 年),位于全南县稀土矿区下游最近的饮用水源保护区为 10km 处的桃江龙南饮用水源区,属于桃江河段。该区段自龙南县界龙南水厂取水口上游 4km 至取水口下游 0.2km,长度 4.2 km,水体功能为饮用、景观用水区,水质目标为II~III。

根据《赣州市地表水功能区划》(2010年),全南矿区周边地表水功能区划见表 2.3。玉坑矿区周边玉坑溪、上辽河、井水河均无明确水环境功能类别,附近桃江段为开发利用区(工业),执行IV类水质标准。长城矿区周边龙迳河、老屋溪无明确水环境功能类别,下游黄田江为保留区,执行 III 类水质标准。

表 2.3 全南矿区周边地表水功能表

序 号	河流湖泊	水功能区名称	水质现状	水质 目标	起始位置	终止位置	长度 km	面积 km²
1	桃江	桃江全南保留区	自然保护区	II	全南县大吉山镇上洞 起源	全南南泾镇中滩全南 水厂取水口上游 4km	50.5	
2	桃江	桃江全南饮用水源区	饮用水源保护区	II~III	全南中滩全南水厂取 水口上游 4km	取水口下游 0.2km	4.2	
3	桃江	桃江全南工业用水区	工业用水区	IV	取水口下游 0.2km	全南县烧斗	14.3	
4	桃江大吉山河	大吉山河全南保留区	II	III	全南县张光营	全南县老麻土	15.6	
5	桃江武岗河	武岗河全南保留区	II	III	全南县乌梅山	全南县大门头	14.4	
6	桃江小溪水	小溪水龙南~全南保留区	III	III	龙南九连山黄牛石	全南县北坑乡	44.3	
7	桃江小溪水全南龙兴 水库	小溪水全南龙兴水库饮用水源区	III	II~III	I 全库			1.46
8	桃江小溪水罗坑河全 南罗坑山水库	小溪水罗坑河全南罗坑山水库饮 用水源区	III	II~III	II 全库		0.01	
9	桃江小慕河	小慕河全南保留区	III	III	全南县小慕乡头溪	小慕河入桃江汇合处	22.8	
10	桃江太平河	太平河龙南保留区	III	III	龙南县杨村乡白沙	太平河入桃江汇合处	51.6	
11	桃江太平河任屋河	任屋河龙南保留区	III	III	龙南县杨村乡鸡啼石	龙南县老虎坝	16	
12	桃江太平河斜陂河	斜陂河龙南保留区	III	III	龙南县杨村上湖	龙南县大坪	37.3	
13	桃江黄田江	黄田江全南保留区	III	III	全南县寨下乡	黄田江入桃江汇合处	76.6	
14	桃江黄田江雅溪河	雅溪河全南保留区	II	III	全南县方洞	全南县江坪	15.8	
15	桃江黄田江鹅公山河	鹅公山全南保留区	III	III	全南县山峰坳 全南县冷布前 18.3		18.3	
16	桃江	桃江全南~龙南保留区	景观娱乐用水区	III	全南县烧斗 龙南县界龙龙南水厂 取水口上游 4km 35.0		35.0	
17	桃江	桃江龙南饮用水源区	饮用水源保护区	II~III	龙南县界龙龙南水厂 取水口上游 4km	取水口下游 0.2km	4.2	
18	桃江	桃江龙南工业用水区	工业用水区	IV	取水口下游 0.2km	龙南县老猪山	11.0	
19	桃江	桃江龙南~全南~信丰保留区	景观娱乐用水区	III	龙南县老猪山	信丰县李屋场	78.0	

2.5.2 地下水

技改项目所在地属于农村地区,地下水化学组分含量中等,为 III 类功能区。

2.5.3 环境空气

技改项目所在地属于农村地区, 为环境空气质量二类区。

2.5.4 声环境

项目所在地周边声环境属于山区和乡村居住区,根据《声环境质量标准》 (GB 3096-2008)中标准适用区域的划分,项目所在地为2类声环境功能区。

2.5.5 生态环境

根据《江西省生态功能区划》,全南县二个稀土矿位于赣南山地丘陵生态区 (III)-贡水流域森林与农田生态亚区 (III-2)-桃江上游水源涵养与生物多样性保护生态功能区 (III-2-5)。

表 2.4 江西省生态功能区划—全南稀土矿区

生态功	生态区	Ⅲ赣南山地丘陵生态区			
能分区	生态亚区	III-2 贡水流域森林与农田生态亚区			
单元	生态功能区	III-2-5-桃江上游水源涵养与生物多样性保护生态功能区			
所在区域与面积		全南县、龙南县全部和定南县北部			
		部分地区森林植被质量较差,低山丘陵地区水土流失比较严重,			
主要生	态环境问题	稀土开采对生态环境破坏相当大,河谷平原地区农业面源污染比			
		较严重			
生态环境敏感性 土壤侵蚀高度敏感,水环境污染、酸雨、耕地资源、地质3					
王恋巧	N 現	度敏感			
十两什太	系统服务功能	主要功能为水源涵养、水质保护和生物多样性保护,其他功能还			
土女土心。	尔凯服务切配	有农业环境保护和水土保持			
	加大森林植被保护力度,重点保护次生常绿阔叶林;强化桃江谷				
十 西 廾 -	大票				
土女工	主要生态保护措施 治理各类污染,严格保护耕地资源;完善已有自然保护区各项基				
		础设施,优先建设饭池嶂山区			

2.6 评价等级

2.6.1 地表水

本项目生产期间生产废水全部返回注液工序循环使用,无废水排放;浸采完成后对采区采用清水清洗,清洗尾水少部分直接用于第二批次采场浸矿补充水,大部分处理后返回原采场清洗工序循环利用;淋洗结束后可能的水环境污染源主要为降雨产生的尾水,由于采取了人工淋洗和封孔措施,只有少量水进入矿体,需要对尾水水质和采场下游的环保回收井进行监测,当尾水稳定达标后,彻底闭矿,闭矿后无废水排放。

综上,本项目无废水直接排放,按照地表水导则,评价等级为三级 B。

2.6.2 地下水

由于《环境影响评价技术导则 地下水环境》(HJ 610-2016)附录 A"H 有色 金属"(包含采选、冶炼、合金和压延加工)的采选部分未针对本项目原地浸矿 工艺进行分类,但考虑到本项目在实际运营过程中存在浸矿母液注入花岗岩风 化层直接对地下水环境造成影响的风险,因此,鉴于工艺特点,本次地下水环境影响评价工作等级定为一级评价。

2.6.3 环境空气

根据《环境影响评价技术导则 大气环境》(HJ 2.2-2018),本项目不涉及有组织大气污染源,无组织排放源主要是注液孔、收液系统建设施工产生的短时无组织扬尘。项目无固定大气排放源,因此,大气环境评价工作等级为三级。

2.6.4 声环境

本项目噪声源主要为富集站水泵、压滤机、空压机噪声等组成。项目所处位置位于《声环境质量标准》(GB3096-2008)中规定的 2 类声环境功能区,周边没有对噪声有特别限制要求的保护区等敏感目标。富集站 200m 范围内没有居民区,受噪声影响人口数量不会增加,因此本项目声环境影响评价等级定为二级。

2.6.5 生态环境

全南 2 个矿区范围面积共 6.2331km²; 占地面积 372.37hm², 面积小于

20km²。不涉及《环境影响评价技术导则生态影响》HJ19-2011 提及的自然保护区、世界文化和自然遗产地等特殊生态敏感区,也不涉及风景名胜区、森林公园、地质公园、重要湿地、原始天然林、珍稀濒危野生动植物天然集中分布区、重要水生生物的自然产卵场及索饵场、越冬场和洄游通道、天然渔场等重要生态敏感区。且项目采用原地浸矿工艺,采场只破坏林下灌草,不会导致土地利用类型明显改变,依据 HJ19-2011,生态影响评价工作等级确定为三级。

2.6.6 土壤

依据《环境影响评价技术导则 土壤环境》(试行)(HJ964-2018)表 A.1 土壤环境影响评价项目类别,本项目属于"采矿业"类中的"金属矿",属于I类项目。根据稀土矿山特征,原地浸矿采场既为生态影响型,又为污染影响型场地,富集站为污染影响型场地,本项目按原地浸矿采场和富集站分别确定评价等级。

2.6.6.1 原地浸矿采场

(1) 生态影响型

项目土壤含盐量范围为 0~0.3g/kg,土壤 pH 范围为 4.12~6.33,根据生态影响型敏感程度分级见表 2.5,项目属于敏感。依据表 2.6,评价等级定为一级。

敏感程	判别依据		
度	盐化	酸化	碱化
敏感	建设项目所在地干燥度 a>2.5 且常年地下水位平均埋深<1.5m 的地势平坦区域;或土壤含盐量>4g/kg 的区域	pH≤4.5	pH≥9.0
较敏感	建设项目所在地干燥度>2.5 且常年地下水位平均埋深 ≥1.5m的,或 1.8<干燥度≤2.5 且常年地下水位平均埋 深<1.8 m的地势平坦区域;建设项目所在地干燥度> 2.5 或常年地下水位平均埋深<1.5m的平原区;或 2g/kg<土壤含盐量≤4g/kg的区域	4.5< pH≤5.5	8.5≤pH< 9.0
不敏感 其他 5.5 <ph<< td=""><td>H<8.5</td></ph<<>		H<8.5	
*是指采用 E601 观测的多年平均水面蒸发量与降水量的比值,即蒸降比值。			

表 2.5 生态影响型敏感程度分级表

表 2.6 生态影响型评价工作等级划分表

项目类别 敏感程度	I类	II类	III类	
敏感	一级	二级	三级	
较敏感	二级	二级	三级	
不敏感	二级	三级	-	
注: "-"表示可不开展土壤环境影响评价工作。				

(2) 污染影响型

原地浸矿采场,注入硫酸镁浸矿液,对土壤环境存在污染风险。按照污染 型场地,全南县矿区占地面积,规模判定为大型(>50hm²)。矿区周边均有居 民点和农田,依据敏感程度分级表 2.7,考虑敏感程度为"敏感"。本项目污染影 响型土壤评价工作等级分级详见表 2.8, 确定本项目安远矿区污染影响型土壤评 价等级为一级。

敏感程度	判断依据				
敏感	建设项目周边存在耕地、园地、牧草地、饮用水源地或居民区、学校、医院、 疗养院、养老院等土壤环境敏感目标的				
较敏感	建设项目周边存在其他土壤环境敏感目标的				
不敏感	其他情况				

表 2.7 污染影响型敏感程度分级表

表 2.8 污染影响型土壤评价工作等级分级表

小

一级

二级

二级

大

二级

二级

二级

II类项目

中

二级

二级

二级

小

二级

三级

三级

大

三级

三级

三级

III类项目

中

三级

三级

小

三级

I类项目

中

一级

一级

二级

大

一级

一级

一级

2.6.6.2 富集站

敏感 较敏感

不敏感

敏感程度

占地规模

本项目 6 个富集站占地总计为 6.91hm^2 , 规模判定为中型 $(5\sim50 \text{hm}^2)$, 占 地规模为中型。各矿区及矿区周边均有居民点和农用地,依据敏感程度分级表 2.7, 考虑敏感程度为"敏感"。因此, 依据污染影响型评价工作等级划分表 2.8, 富集站土壤评价等级为一级。

综上分析,根据《环境影响评价技术导则 土壤环境(试行)》(HJ 964-2018)评价等级判定依据,确定本项目原地浸矿采场生态影响型土壤评价等级 为一级,污染影响型土壤评价等级为一级。富集站污染影响型土壤评价等级为 一级。

2.6.7 环境风险

根据《建设项目环境风险评价技术导则》(HJ 169-2018)规定,环境风险 评价工作等级由环境风险潜势确定,划分为一级、二级、三级,划分依据见表 **2.9**°

表 2.9 评价工作等级划分

环境风险潜势	IV、IV+	III	II	I
评价工作等级	1	1 1	111	简单分析 a
a是相对于详细说	平价工作内容而言,	在描述危险物质、	环境影响途径、	环境危害后果、风
	险防范护	昔施等方面给出定性	生说明。	

根据风险物质调查结果,本项目仅涉及风险物质浓硫酸。各富集站、采场距离较远,车间分散,本评价作为独立的风险单元来确定等级。各富集站浓硫酸储罐最大有效存储量为 9t (充装系数 0.8),浓硫酸的临界量为 10t,则 $\Sigma Q=0.9<1$,项目环境风险潜势为I。

由上表可知,本项目环境风险评价工作等级为简单分析。

2.7 评价范围

2.7.1 地表水

全南县玉坑稀土矿涉及地表水体为玉坑溪、小慕河、上辽河,长城稀土矿 涉及地表水体为老屋溪、龙迳河,根据矿体分布及地表水系分布情况确定全南 县矿区地表水评价范围,详见表 2.10。

表 2.10 全南矿区地表水评价范围

矿区	流域	河流	评价起点	评价终点	评价标准
	大	玉坑溪	源头	玉坑溪与小慕河 汇合口	
		井水河	玉坑溪、井水河 汇合口	井水河、小慕河 汇合口	
稀土 矿区		小慕河	玉坑溪与小慕河 汇合口	小慕河与桃江汇 合口	《地表水 质量标
	桃江支流上辽 河	上辽河	源头	上辽河与桃江汇 合口	准》III类
长城 稀土	桃江支流黄田	老屋溪	源头	老屋溪与黄田江 汇合口	
矿区	江流域	龙迳河	长城矿区上游 500 m	龙迳河与黄田江 汇合口	

2.7.2 地下水

依据《环境影响评价技术导则 地下水环境》(HJ 610-2016)的要求,考虑项目周边的地质条件、水文地质条件、地形地貌特征、地下水保护目标和地下水补径排条件划定本工程的评价区范围。

(1) 长城稀土矿

矿区地下水评价范围位于江西省全南县陂头镇,地下水评价范围东经***~***,北纬***~***,北以石海-星光村冲沟一线为界,东西及南侧以地表分水岭为界,评价区面积约11.96km²。

(2) 玉坑稀土矿

玉坑稀土矿矿区地下水评价范围位于江西省全南县,地下水评价范围东经***~***,北纬***~****,东以衫角头-秀塅一线为界,西以镇仔头-岔仔河一线为界,南至黄田江支流,北侧以地表分水岭为界,评价区面积约17.06km2。

2.7.3 环境空气

根据《环境影响评价技术导则 大气环境》(HJ 2.2-2018) 5.4.3 条规定,三级评价项目不需设置大气环境影响评价范围,本次整合项目不设置大气评价范围。

2.7.4 声环境

本项目所处的声环境功能区为 GB 3096-2008 规定的 2 类地区,评价等级为二级,评价范围为各富集站边界外延 200m 范围,经过现场考察,富集站 200m 范围内无居民等敏感目标。

2.7.5 生态环境

(1) 长城稀土矿区

全南县长城稀土矿矿区生态评价区, 东侧、南侧、西侧以道路为界, 北侧以山脊线为界。评价总面积为 915.16hm²。

(2) 玉坑稀土矿区

全南县玉坑稀土矿矿区生态评价区,东侧、南侧、西侧以河流为界,南侧以山脊线为界。评价总面积为 2152.99hm²。

2.7.6 土壤

根据《环境影响评价技术导则 土壤环境(试行)》(HJ 964-2018),本项目各矿区土壤环境影响评价范围为:污染影响型评价范围为矿区边界外扩 1km,生态影响型评价范围为矿区边界外扩 5km。

长城稀土矿土壤环境影响评价范围约为 112.36km²。

玉坑稀土矿土壤环境影响评价范围约为 129.73km²。

2.7.7 环境风险

本项目环境风险评价等级为简单分析,不划环境风险评价范围。

2.8 评价标准

根据全南生态环境局出具的环境影响评价执行标准确认函,确定本次技改项目环境影响评价环境质量标准机污染物排放标准。

2.8.1 环境质量标准

2.8.1.1 环境空气

环境空气质量执行《环境空气质量标准》(GB 3095-2012)及修改单中的二级标准,环境空气质量标准限值见表 2.11。

项目	单位	统计值	标准值	标准名称
DM	μg/m ³	24 小时平均	150	
PM_{10}	μg/m²	年平均	70	
PM _{2.5}	$\mu g/m^3$	24 小时平均	75	
F 1V12.5	μg/III	年平均	35	
TSP	$\mu g/m^3$	24 小时平均	300	
151	μg/III	年平均	200	
	SO_2 $\mu g/m^3$	1小时平均	500	// T 拉克 左 氏 是 仁 / 比 \\
SO_2		24 小时平均	150	《环境空气质量标准》 (GB 3095-2012)中的二
		年平均	60	级标准及其修改单
		1小时平均	200	· · · · · · · · · · · · · · · · · · ·
NO_2	$\mu g/m^3$	24 小时平均	80	
		年平均	40	
0-	$\mu g/m^3$	1小时平均	200	
O ₃	μg/III	8小时平均	160	
СО	mg/m ³	1小时平均	10	
	IIIg/III	24 小时平均	4	

表 2.11 环境空气质量标准

2.8.1.2 地表水

根据《江西省地表水环境功能区划》和《赣州市地表水功能区划》,本项目全南县玉坑稀土矿区周边玉坑溪、上辽河、井水河均无明确水环境功能类别,附近桃江河段为开发利用区(工业),执行IV类水质标准。各矿区的地表水体及水质类别见表 2.12。

地表水 序号 矿区 功能区 水质类别 区县 玉坑稀土矿 桃江 开发利用区(工业) IV 5 全南 Ш 长城 黄田河 保留区

表 2.12 各矿区周边地表水体及水质类别

从矿区流出的小溪流无明确水环境功能类别,但经多级汇流后进入 III 类水体。根据江西省《离子型稀土矿山开采污染物排放标准》(DB36 1016-2018): 矿区法定边界下游最近有水力联系的地表水汇水断面和污水处理厂排口水污染物执行 DB36 1016-2018 中一级排放标准。汇水断面和排口下游存在客观的混合区(混合过程段),根据《环境影响评价技术导则 地表水根据》(HJ2.3-2008)中"8.2.2 水环境影响评价应满足以下要求:混合区外水域应满足水环境功能区或水功能区的水质目标要求",因此在混合区外执行《地表水环境质量标准》(GB 3838-2002)中的III类水质标准。地表水环境质量标准限值见表 2.13。总硬度和溶解性总固体参照《生活饮用水卫生标准》(GB 5749-2006)。

地表水质量标准 序号 监测因子 单位 标准名称 IV类 II类 III类 6~9 6~9 6~9 1 pН 无量纲 高锰酸盐 ≤10 2 ≤4 ≤6 指数 3 COD ≤15 ≤20 ≤30 4 BOD5 <3 <4 ≤6 5 氨氮 ≤0.5 ≤1.0 ≤1.5 《地表水质量标 6 总磷 ≤0.1≤0.2 ≤0.3 准》(GB3838-7 铜 mg/L ≤1.0 ≤1.0 ≤1.0 2002) 锌 8 ≤1.0 ≤1.0 ≤2.0 9 铅 ≤0.01 ≤0.05 ≤0.05 砷 10 ≤0.05 ≤0.05 ≤0.1 镉 11 ≤0.005 ≤0.005 ≤0.005 铬(六 12 ≤0.05 ≤0.05 ≤0.05 价)

表 2.13 地表水环境质量标准

				,	,	
13	汞		≤0.00005	≤0.0001	≤0.001	
14	氰化物		≤0.05	≤0.2	≤0.2	
15	氟化物		≤1.0	≤1.0	≤1.5	
16	氯化物		≤250	≤250	≤250	
17	硝酸盐		≤10	≤10	≤10	
18	硫酸盐		≤250	≤250	≤250	
19	硫化物		≤0.1	≤0.2	≤0.5	
20	石油类		≤0.05	≤0.05	≤0.5	
21	粪大肠菌 群	个/L	≤2000	≤10000	≤20000	
22	总硬度		450	450	450	《生活饮用水卫
23	溶解性总 固体	mg/L	1000	1000	1000	生标准》 (GB5749-2006)

2.8.1.3 底泥

本项目底泥评价标准参照《农用污泥污染物控制标准》(GB4284-2018)中A级污泥产物标准,标准限值见表 2.14。

序号	控制项目	污染物限值	单位	标准名称
1	总镉(以干基计)	<3	mg/kg	
2	总汞 (以干基计)	<3	mg/kg	
3	总铅(以干基计)	<300	mg/kg	 《农用污泥污染
4	总铬(以干基计)	< 500	mg/kg	物控制标准》
5	总砷(以干基计)	<30	mg/kg	(GB4284-2018)
6	总镍(以干基计)	<100	mg/kg	(GD4204-2016)
7	总锌(以干基计)	<1200	mg/kg	
8	总铜(以干基计)	< 500	mg/kg	

表 2.14 农用污泥污染物控制标准

2.8.1.4 地下水

本项目地下水环境质量评价执行《地下水质量标准》(GB/T14848-2017) III 类标准,标准限值见表 2.15。

序号	项目	单位	III 类标准值	序号	项目	单位	III 类标准值
1	pH值	无量纲	6.5~8.5	13	汞	mg/L	0.001
2	溶解性总固体	mg/L	1000	14	镉	mg/L	0.005
3	总硬度	mg/L	450	15	铬(六价)	mg/L	0.05
4	耗氧量	mg/L	3	16	氟化物	mg/L	1
5	氨氮	mg/L	0.5	17	铁	mg/L	0.3
6	硝酸盐 (以氮计)	mg/L	20	18	锰	mg/L	0.1
7	亚硝酸盐(以氮计)	mg/L	1	19	铜	mg/L	1
8	挥发性酚类	mg/L	0.002	20	锌	mg/L	1

表 2.15 地下水质量标准

9	氰化物	mg/L	0.05	21	Na^+	mg/L	200
10	硫化物	mg/L	0.02	22	Cl-	mg/L	250
11	铅	mg/L	0.01	23	SO ₄ ²⁻	mg/L	250
12	砷	mg/L	0.01				

2.8.1.5 土壤

污染影响型因子:项目评价区域建设用地土壤环境执行《土壤环境质量标准 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)表 1 风险筛选值第二类用地标准,标准值详见表 2.16;项目区域外农用地土壤执行《土壤环境质量标准 农用地土壤污染风险管控标准(试行)》(GB 15618-2018)表 1 风险筛选值标准,标准值详见表 2.17。

表 2.16 土壤环境质量标准 建设用地土壤污染风险管控标准 单位: mg/kg

1	7, 2.10 <u>1.10</u>	【你在 建区用地工块/ 		.Мит — I	. mg/kg		
			筛选值	直	管制值		
序号	污染物名称	CAS 编号	第一类用地	第二类 用地	第一类用 地	第二类 用地	
		重金属和无机					
1	砷	7440-38-2	20 ¹	60 ¹	120	140	
2	镉	7440-43-9	20	65	47	172	
3	铬 (六价)	18540-29-9	3.0	5.7	30	78	
4	铜	7440-50-8	2000	18000	8000	36000	
5	铅	7439-92-1	400	800	800	2500	
6	汞	7439-97-6	8	38	33	82	
7	镍	7440-02-0	150	900	600	2000	
		挥发性有机	物				
8	四氯化碳	56-23-5	0.9	2.8	9	36	
9	氯仿	67-66-3	0.3	0.9	5	10	
10	氯甲烷	74-87-3	12	37	21	120	
11	1,1-二氯乙烷	75-34-3	3	9	20	100	
12	1,2-二氯乙烷	107-06-2	0.52	5	6	21	
13	1,1-二氯乙烯	75-35-4	12	66	40	200	
14	顺-1,2-二氯乙烯	156-59-2	66	596	200	2000	
15	反-1,2-二氯乙烯	156-60-5	10	54	31	163	
16	二氯甲烷	75-09-2	94	616	300	2000	
17	1,2-二氯丙烷	78-87-5	1	5	5	47	
18	1,1,1,2-四氯乙烷	630-20-6	2.6	10	26	100	
19	1,1,2,2-四氯乙烷	79-34-5	1.6	6.8	14	50	
20	四氯乙烯	127-18-4	11	53	34	183	
21	1,1,1-三氯乙烷	71-55-6	701	840	840	840	
22	1,1,2-三氯乙烷	79-00-5	0.6	2.8	5	15	
23	三氯乙烯	79-01-6	0.7	2.8	7	20	

			筛选值	直	管制	值
序号	污染物名称	CAS 编号	第一类用地	第二类 用地	第一类用 地	第二类 用地
24	1,2,3-三氯丙烷	96-18-4	0.05	0.5	0.5	5
25	氯乙烯	75-01-4	0.12	0.43	1.2	4.3
26	苯	71-43-2	1	4	10	40
27	氯苯	108-90-7	68	270	200	1000
28	1,2-二氯苯	95-50-1	560	560	560	560
29	1,4-二氯苯	106-46-7	5.6	20	56	200
30	乙苯	100-41-4	7.2	28	72	280
31	苯乙烯	100-42-5	1290	1290	1290	1290
32	甲苯	108-88-3	1200	1200	1200	1200
33	间二甲苯+对二甲苯	108-38-3, 106-42-3	163	570	500	570
34	邻二甲苯	95-47-6	222	640	640	640
		半挥发性有机	L物			
35	硝基苯	98-95-3	34	76	190	760
36	苯胺	62-53-3	92	260	211	663
37	2-氯酚	95-57-8	250	2256	500	4500
38	苯并[a]蒽	56-55-3	5.5	15	55	151
39	苯并[a]芘	50-32-8	0.55	1.5	5.5	15
40	苯并[b]荧蒽	205-99-2	5.5	15	55	151
41	苯并[k]荧蒽	207-08-9	55	151	550	1500
42	崫	218-01-9	490	1293	4900	12900
43	二苯并[a,h]蒽	53-70-3	0.55	1.5	5.5	15
44	茚并[1,2,3-cd]芘	193-39-5	5.5	15	55	151
45	萘	91-20-3	25	70	255	700

表 2.17 土壤环境质量标准 农用地土壤污染风险管控标准 单位: mg/kg

序号	号 污染物项目 -			风险负		
万 5	175	未初项目	pH≤5.5	5.5 <ph≤6.5< td=""><td>6.5<ph≤7.5< td=""><td>pH>7.5</td></ph≤7.5<></td></ph≤6.5<>	6.5 <ph≤7.5< td=""><td>pH>7.5</td></ph≤7.5<>	pH>7.5
1	镉	其他	0.3	0.3	0.3	0.6
2	汞	其他	1.3	1.8	2.4	3.4
3	砷	其他	40	40	30	25
4	铅	其他	70	90	120	170
5	铬	其他	150	150	200	250
6	铜	果园	150	150	200	200
O	刊	其他	50	50	100	100
7	镍		60	70	100	190
8	锌		200	200	250	300

2.8.1.6 声环境

执行《声环境质量标准》(GB 3096-2008)中 2 类声环境功能区标准值,见 \mathbf{z} **2.18**。

表 2.18 声环境噪质量标准限值 单位: dB(A)

标准类别	昼间	夜间	标准名称
2 类	60	50	《声环境质量标准》(GB 3096-2008)

2.8.2 污染物排放标准

2.8.2.1 废水

本项目矿区法定边界下游最近有水力联系的地表水汇水断面水污染物执行 江西省《离子型稀土矿山开采污染物排放标准》(DB36 1016-2018)中一级排放 标准。见表 2.19。

项目名称 排放限值 执行依据 рΗ 6~9 悬浮物(SS) 50 化学需氧量(COD) 60 氟化物(以F计) 8 总磷 0.5 总氮 30 《离子型稀土矿山开采水污染物排放 氨氮 15 标准》(DB36 1016-2018) 总锰 0.5 总镉 0.05 总砷 0.10 总铅 1.0 钍、铀总量 0.1 硫酸盐(以 SO42-计) 800

表 2.19 水污染物排放浓度限值 单位: mg/L (pH 无量纲)

2.8.2.2 废气

本项目无固定大气排放源,大气污染物主要是施工、运输等扬尘无组织排放,执行《稀土工业污染物排放标准》(GB 26451-2011)(修改单)表6现有企业和新建企业边界大气污染物浓度限值。

表 2.20 大气污染物排放浓度限值

污染物	单位	标准限值	标准依据	备注
颗粒物	mg/m ³	1.0	《稀土工业污染物排放标准》 (GB 26451-2011)(修改单)表 6	项目边界 浓度

2.8.2.3 噪声

施工期噪声执行《建筑施工场界环境噪声排放标准》(GB 12523-2011);运营期噪声执行《工业企业厂界环境噪声排放标准》(GB 12348-2008)中的2类标准要求,标准值见表 2.21。

表 2.21 噪声排放执行标准

阶段	标准名称	项目	单位	单位 标准值	
施工期	《建筑施工场界环境噪声排放标	等效连续 A 声级	dB(A)	昼间	70
旭工粉	准》(GB 12523-2011)	守双廷织 A 产级	ub(A)	夜间	55
运营期	《工业企业厂界环境噪声排放标	等效连续 A 声级	4D(A)	昼间	60
色昌朔	准》(GB 12348-2008) 2 类标准	守双迁线 A 产级	dB(A)	夜间	50

2.8.2.4 固体废物

固体废物执行《固体废物鉴别标准 通则》(GB 34330-2017)、《危险废物鉴别标准 通则》(GB 5085.7-2019)、《危险废物贮存污染控制标准》(GB 18597-2001)及修改单、《一般工业固体废物贮存和填埋污染控制标准》(GB 18599-2020)。

2.9 环境保护目标

2.9.1 地表水

地表水环境保护目标分布图见 2.7.1 节地表水评价范围图。

位于全南稀土矿区下游最近的饮用水源保护区为 10km 处的桃江龙南饮用水源区,属于桃江河段。该区段自龙南县界龙南水厂取水口上游 4km 至取水口下游 0.2km,长度 4.2 km,水体功能为饮用、景观用水区,水质目标为II~III。

与最近矿区的 水质 矿区 流域 相对位置、方 保护目标段 河流 目标 位距离 玉坑 穿越矿区 源头~玉坑溪与小慕河汇合口 III类 桃江 溪 玉坑溪、井水河汇合口至井水河、小 小慕 井水 西南侧 300m III类 河小 河 慕河汇合口 流域 玉坑溪与小慕河汇合口~小慕河与桃 小慕 玉坑 南侧 580m III类 河 江汇合口 桃江 上辽 上辽 穿越矿区 源头~上辽河与桃江汇合口 III类 河小 河 流域 桃江 老屋 穿越矿区 源头~老屋溪与黄田江汇合口 III类 黄田 溪 长城 长城矿区上游 500 m~龙迳河与黄田 江流 龙迳 东北侧 50m III类 域 河 江汇合口

表 2.22 地表水环境保护目标

2.9.2 地下水

根据现场调查结果,矿区周边无集中式地下水供水水源地,地下水开采主

要为稀土矿区周边的山泉水及分散的民井,为分散式地下水水源,其中民井多数用于冲洗和清洁,少量用于饮用,保护目标的基本情况详见表 2.23、表 2.24。

表 2.23 全南长城稀土矿评价区地下水环境保护目标现状调查表

编号	X	Y	与矿区的相对位置	地下水类型	水源类型
Q008	***	***	矿区北侧 278m	风化带裂隙水	井
Q010	***	***	矿区内	风化带裂隙水	井
Q015	***	***	矿区北侧 1081m	风化带裂隙水	井
Q016	***	***	矿区北侧 1548m	松散岩类孔隙水	井
Q020	***	***	矿区北侧 1287m	风化带裂隙水	井
Q021	***	***	矿区西北侧 1162m	松散岩类孔隙水	井
Q022	***	***	矿区北侧 1659m	松散岩类孔隙水	井
Q025	***	***	矿区内	风化带裂隙水	井
Q003	***	***	矿区东侧 279m	风化带裂隙水	泉
Q005	***	***	矿区东侧 639m	风化带裂隙水	泉
Q006	***	***	矿区东侧 505m	风化带裂隙水	泉
Q007	***	***	矿区东侧 464m	风化带裂隙水	泉
Q009	***	***	矿区北侧 36m	风化带裂隙水	泉
Q014	***	***	矿区北侧 896m	风化带裂隙水	泉
Q017	***	***	矿区北侧 1247m	风化带裂隙水	泉
Q018	***	***	矿区北侧 1240m	风化带裂隙水	泉
Q019	***	***	矿区北侧 1086m	风化带裂隙水	泉
Q024	***	***	矿区西侧 333m	风化带裂隙水	泉
Q026	***	***	矿区北侧 176m	风化带裂隙水	泉
Q027	***	***	矿区西侧 337m	风化带裂隙水	泉
Q028	***	***	矿区北侧 316m	风化带裂隙水	泉
Q029	***	***	矿区西侧 441m	风化带裂隙水	泉
Q030	***	***	矿区西侧 1321m	构造裂隙水	泉

表 2.24 全南玉坑稀土矿评价区地下水环境保护目标现状调查表

编号	X	Y	与矿区的相对位置	地下水类型	水源类型
Q038	***	***	矿区东侧 819m	松散岩类孔隙水	井
Q039	***	***	矿区东侧 722m	构造裂隙水	井
Q040	***	***	矿区东侧 537m	构造裂隙水	井
Q041	***	***	矿区东侧 110m	风化带裂隙水	井
Q042	***	***	矿区东侧 234m	松散岩类孔隙水	井
Q043	***	***	矿区东侧 1072m	松散岩类孔隙水	井
Q047	***	***	矿区南侧 515m	构造裂隙水	井
Q048	***	***	矿区南侧 18m	风化带裂隙水	井
Q049	***	***	矿区南侧 157m	风化带裂隙水	井
Q050	***	***	矿区南侧 22m	风化带裂隙水	井
Q051	***	***	矿区南侧 1378m	构造裂隙水	井
Q052	***	***	矿区内	风化带裂隙水	井
Q053	***	***	矿区内	风化带裂隙水	井

编号	X	Y	与矿区的相对位置	地下水类型	水源类型
Q054	***	***	矿区西侧 263m	风化带裂隙水	井
Q055	***	***	矿区内	风化带裂隙水	泉
Q056	***	***	矿区西侧 210m	风化带裂隙水	泉
Q057	***	***	矿区内	风化带裂隙水	泉
Q058	***	***	矿区西侧 140m	风化带裂隙水	泉
Q059	***	***	矿区南侧 449m	松散岩类孔隙水	泉
Q060	***	***	矿区南侧 747m	构造裂隙水	泉
Q062	***	***	矿区南侧 995m	构造裂隙水	泉

2.9.3 环境空气

由于本次评价为三级评价,不设评价范围,没有保护目标。

2.9.4 声环境

本项目富集站附近 200m 范围内无声环境保护目标。

2.9.5 生态环境

2.9.5.1 自然保护地

全南县自然保护地主要有江西梅子山省级森林公园,总面积为180.51hm²,由梅子山和天龙山两个景区组成,梅子山森林公园紧邻全南县城,拥有较为丰富的植物资源。梅子山森林公园共有木本植物83科207属390种,野生木本植物77科165属304种。观花植物有56种,隶属于18科;观叶植物有47种,隶属于14科;观果植物有30种,隶属于13科;垂直绿化植物有3种,隶属于3科;药用植物有285种;野菜植物资源有4种;保护与改造环境植物资源有12种。

与江西梅子山省级森林公园最近的为玉坑稀土矿,东南角最近直线距离为 261m,梅子山景区坐落于全南县城建成区,矿区与省级森林公园中间有道路和村庄阻隔。玉坑稀土矿废水不会汇入森林公园,矿区不会对江西梅子山省级森林公园产生影响。

2.9.5.2 生态公益林

全南县玉坑、长城稀土矿矿区范围内无生态公益林。

2.9.5.3 基本农田

全南县长城稀土矿矿区范围内无基本农田。全南县玉坑稀土矿矿区范围内 涉及基本农田 9.09hm²。

2.9.5.4 生态红线

根据证明文件,全南2个稀土矿矿区均不在生态红线范围内。

3 现有工程回顾性评价

3.1 现有工程基本情况

3.1.1 现有工程历时沿革

现有 2 个矿山筹建于 1988-2000 年之间,大部分矿山早期采用池浸、堆浸工艺,后期小部分矿山转为原地浸矿工艺。由于池浸和堆浸工艺对环境危害较大,原江西省国土资源局于 2007 年要求江西省内稀土采矿全面禁止采用池浸和堆浸工艺,采用原地浸矿工艺。

现有矿山的开采特点为"多、小、乱、差",矿山很多,无序开采,没有统一规划,同时还存在着生产工艺水平不一,很多矿山的回收率达不到要求等问题。因种种问题,应赣州市政府要求现有 40 个矿山 2011 年 10 月起全部停产至今。

(1) 1999 年以前

稀土生产有 40 多年历史,在 1999 年以前形成了众多的矿山生产点,基本有以下 3 种组建方式:①原县稀土工业局投资组建的稀土矿(县矿),多数在 80 年代组建;②乡(镇)办稀土矿,多数在 80 年代末-90 年代初期;③个体投资办矿,多数在 90 年代中期以后。

其中县办矿和乡办矿均属国有投资办矿,到 90 年代中期,因市场行情不好、且经营管理不善,导致矿山持续亏损,陆续将经营权转让给个体,收取低廉管理费。经过十几年开采,原矿山资产基本由个体重新购置,资产多属于开采者,造成国有资产流失。

(2) 1999~2000年

1999 年,针对赣州市稀土开采混乱、资源破坏、矿价低廉等状况,赣州市政府作出了对稀土资源进行整合的决定。2000 年 7 月,市政府批准由市经贸委牵头,联合龙南稀土工业公司、赣州稀土金属冶炼厂、赣州有色冶金研究所等12 家稀土相关企业共同出资组建赣州南方稀土矿冶有限责任公司(以下简称南方矿冶公司),把分散在 8 个县的 88 个稀土采矿权统一上收到南方矿冶公司,实现了采矿权的集中控制;并经省政府批准,南方矿冶公司成为全省稀土矿产品的指定经营单位。

(3) 2000年~2004年12月

2003 年,国家提出组建南北两大稀土集团,由中铝、五矿牵头,南方矿冶公司等一批南方稀土企业共同组建的南方稀土集团组建流产。赣州市委针对南方矿冶公司民营相对控股、争议较大的状况,决定由赣州市本级与 8 个县(其中1家民企)共同组建赣州稀土矿业有限公司,8 个县 88 本采矿权证从南方矿冶公司划出,评估作价 8152.55 万元(其中1家民企1个矿权277.73万元),赣州市本级以现金和实物资产评估作价1447.45万元,构成公司股本9600万元,2004年12月29日,稀土矿业公司成立并运作至今。自此稀土矿业公司拥有全市88个稀土采矿权证,成为赣州全部稀土矿山的唯一采矿权人,市本级也成为了稀土矿业公司的实际控制人。

(4) 2004年12月~2008年6月

在这一时期,公司主要采取"矿权租赁"和"开票收费"的方式管理矿山,即把采矿权租赁给矿山开采者,由矿山开采者自行组织生产,自行与分离厂实施交易,公司对各矿山生产的稀土原矿集中入库保管,统一财务结算和开具购销发票,并代扣代交有关税费;同时,公司按照销售价格收取一定比例的矿权管理费,维持公司的日常管理和开支。这种运作方式,对市内稀土原矿流向的监控起到了一定的作用,但公司没有履行采矿权人的权利和义务,无法对稀土资源进行实质性掌控,对产业的支撑和撬动作用也难以发挥。

(5) 2008年7月~2010年4月

2008年7月3日,赣州市委、市政府下发《关于进一步做好全市稀土资源整合工作的意见》,要求稀土矿业公司履行采矿权人的权利和义务,实施全面转型。直至2010年4月,稀土矿业公司开始实施转型,对稀土矿产品实施统一收购,统一入库,统一委托冶炼企业加工,分离冶炼产品的重点有价元素面向市内深加工应用企业优先、优价供应。目前,转型工作取得阶段性成效。但是稀土矿业公司仍然没有进入矿山生产环节,仅仅签订采选工程劳务承包和承揽开采合同,在矿山的启动时间、矿块动用、开采数量的控制以及安全、环保、水保等方面采矿权人严重缺位。

(6) 2010年5月~2020年12月

赣州稀土矿业有限公司 2010 年 5 月至今开始进行赣州稀土矿山的资源整合

工作,将赣州市现有的 88 本证进行整合,最终形成 44 本证,整个整合项目分二期进行,其中龙南县和定南县的整合工程为一期,剩下 6 个县的整合工程为二期。一期整合项目已于 2013 年获得环评批复。一期整合后,为实现节约利用资源和有效保护环境相得益彰,赣州稀土矿业有限公司开展"绿色"的离子型稀土提取工艺的科学研究工作。2016 年以来,赣州稀土以南方离子型稀土矿山为研究对象,在现有的原地浸矿研究基础上,对离子型稀土矿山地质结构、新型浸矿剂等稀土提取工艺进行重点攻关,开发了一套具有自主知识产权的"硫酸镁浸矿—氧化镁富集"开采工艺体系(以下简称"无铵工艺"),该工艺可以有效提高稀土综合回收率,最大程度的回收高价值的铽镝稀土配分,同时可以从源头上减轻目前的氨氮污染问题,实现资源利用和有效保护环境的相统一。因此,赣州稀土矿业有限公司 2019 年 10 月委托中国恩菲工程技术有限公司对一期整合项目进行技改环评,将原硫酸铵浸矿工艺技改为硫酸镁浸矿的无铵工艺,一期技改工程于 2020 年获得环评批复。

(7) 2021年1月至今

一期工程整合完成后,为加快推进整合(二期)矿区采矿许可证的办理, 提高公司所属稀土矿山资源开发利用保障能力,赣州稀土矿业有限公司委托我 公司开展整合(二期)技改项目环境影响评价工作。

3.1.2 现有工程矿区范围

本项目共涉及两个非整合矿区,矿区总面积约 6.2331km²,整合后的 2 个稀土矿山基本情况见表 3.1。现有矿山均处于停产状态。

序号	区县	整合后	整合前	建矿时间	整合前面 积(km²)	整合后 面积 (km²)	备注
1	全南县	玉坑	玉坑	1989	4.2343	4.2343	
2	王用云	长城	长城	1984	1.9988	1.9988	

表 3.1 整合前后矿山基本情况

3.1.3 建设规模与产品方案

现有矿山建设规模及产品方案见表 3.2。

表 3.2 整合前矿山基本情况

序号	整合矿区		现有矿山名称	整合前规模(t/a,折 REO)	产品方案
1	全南县	玉坑	玉坑	***	氧化稀土
2	全南县	长城	长城	***	氧化稀土

3.2 现有工程组成

3.2.1 采场

现有工程原地浸矿采场均进行了复垦,具体见3.4.1节废弃地治理现状。

3.2.2 现有水冶车间

目前稀土矿区仍处于物权与矿权两权分离状态,全南现有车间2个保留,保留水冶车间已对工艺池防渗、清污分流、厂容厂貌整改完成,并进入管护期;后续恢复生产之前都按新工艺标准整改,保留的水冶车间见表3.3。

序 号	现有采 矿权	母液处理车间	现有工程规模 折氧化稀土 (t/a)	保留水冶车间	规划规模氧 化稀土 (t/a)
1	长城	杨溪车间	***	全部设备、部分工艺池	***
2	L JU	园岭车间	***	全部设备、部分工艺池	***

表 3.3 整合二期技改项目现有水冶处理车间情况一览表

3.3 现有工程分析

3.3.1 现有工程采矿工艺

现有 40 个矿区建矿之初均为池浸或堆浸工艺,慢慢发展到原地浸矿工艺。现对池浸工艺、堆浸工艺和现有原地浸矿工艺进行介绍。

3.3.1.1 池浸工艺

现有工程稀土矿山建矿最初均采用池浸工艺。

池浸工艺主要分为三个主要工序: 首先是对划定的矿段进行表土剥离和矿石剥离,矿石剥离方式为人工剥离,采用手推车、铁铲等较原始的人工手段进行矿石剥离。

将剥离下的矿石卸入浸矿池中,同时加入浸矿药剂(草酸、硫铵)进行浸矿作业。池浸池的体积较小,一般为 100~150m³左右,其生产能力较小。

最后将浸矿池中的浸矿液从池底导出,进入母液处理车间,将浸矿尾矿捞出、排尾。尾矿的排尾直接从山坡高处卸向低处。长期的池浸排尾已经导致当地形成了很多不规范的尾砂库。

3.3.1.2 堆浸工艺

堆浸工艺流程主要包括矿石准备、堆浸场建造、筑堆、渗滤浸出、洗堆与 卸堆和稀土回收等工序。

(1) 矿石准备

对划定的矿段进行表土剥离和矿石剥离,矿石剥离方式为人工剥离,采用手推车、铁铲等较原始的人工手段进行矿石剥离。

(2) 堆浸场建设

堆浸场建于山坡、山谷或平地上,一般要求有 3%~5%的坡度。用各种工程机械对堆场底面进行清理和平整后,进行防渗处理,防渗材料普遍使用塑料薄膜。先将地面压实或夯实,其上铺聚乙烯塑料薄膜或高强度聚乙烯薄板、或铺油毡纸或人造毛毡,在垫层上铺以细粒砂和 0.5~2.0m 厚的粗粒砂。

(3) 矿石筑堆

矿石筑堆是矿石堆存在堆浸场,并进行表面平整,依次在堆场表面拉沟, 增强喷淋液渗透性。

(4) 喷淋

矿石筑堆结束,在堆场表面布置喷淋管道。喷淋主管道通常采用 PVC 管, 支管可用塑料管,堆场顶部表面采用摇摆式喷头,堆场四周边坡采用雨鸟式喷 头。

(5) 渗滤浸出

稀土溶于浸出液后,顺收液沟流入集液箱,清液顺管道流入母液池。

(6) 洗堆

喷淋结束后, 堆场中还存在一定的浸出母液, 为防止造成稀土的流失和对环境产生影响, 需要洗堆。洗堆一般用工业用水进行连续喷淋。

3.3.1.3 现有原地浸矿工艺

现有原地浸矿工艺与过去池浸工艺相比具有产量大、速度快、不开挖山体、不产生尾砂等显著的优点,因而在各离子型稀土矿山都在积极地推广使用这一工艺。原地浸矿工艺始于 1995 年,矿山综合效益较好,生产规模有明显提高。

现有原地浸矿工艺主要由高位池、注液孔、收液工程和管线工程组成。

(1) 注液孔工程

注液孔为 φ0.3~0.5m 左右小圆孔,孔深为见矿 1~1.5m,注液孔网度普遍为 1.5×1.5m,分布采用菱形均匀布置。为减少注液盲区,在注液孔之间和矿体较

厚地方,再均匀布置适量的注液浅孔。每个注液孔安装注液管道及闸阀控制注液量。

(2) 高位池

高位池分为相对较固定的高位池和较简易的高位池,较固定高位池根据矿区矿量分布及地形等因素确定,较固定的高位池可服务较多矿块;简易高位池一般只服务一至二个矿块,建简易高位池成本相对较低。

高位池均位于各矿段地形较高处,一般占地面积约 100m²,容积一般 100~300m³,池底和池壁使用防雨毡布进行覆盖,防止浸矿液渗漏和腐蚀池壁、池底。

(3) 收液工程

裸脚式原地浸矿采场:原地浸矿采场根据基岩隔水层存在的高度进行收液工程的布置,如果原地浸矿采场隔水层在坡脚出露,沿其层面流的浸出液会从坡脚流出,这时只要在坡脚设置收液沟,就可将浸出液汇集回收。

全覆式原地浸矿采场:矿体底板隔水层低于当地侵蚀基准面,或在坡脚处矿体底界面在潜水面以下,或隔水层(或矿体底板)起伏变化,倾向也变化。全覆式原地浸矿采场必须采取收液巷道进行收液。

① 收液沟

在矿体的山脚下,沿矿体边界挖一条宽约为 1.0m,深约为 0.5~1m 左右的 收液沟,母液经天然底板流到收液沟,再经收液沟流到收液池。现有工程的收液沟均未采取防渗措施。

②收液巷道

依据矿体的赋存条件,在矿体的下盘布置若干条巷道,巷道间距为15~20m,巷道断面为梯形(1.2m×1.8m),巷道坡度为2~5°,巷道底板完成后修成浅"V"字形,现有工程的收液巷道均未采取防渗措施。

③母液中转池

收液池主要用于集中收液沟和收液巷道收集的母液。通常在收液沟和收液巷道下游建一个 30m³左右的收液池,池中安一个出水口,矿块出来的母液均流到此池中转后到母液处理车间母液集中池。

(4) 管路工程

①浸矿剂管线

浸矿剂管线为母液处理车间配液池至高位池管线,管路采用 2.5-3 寸 PVC 管,根据实际的扬程和流量选定耐酸泵。

②顶水管路

顶水线路同浸矿剂管路。

③矿块注液管路(高位池至注液孔)

高位池至矿块的主管路采用 2 寸 PVC 管,主管路至各个注液孔的管路采用 8 分 PVC 管。

④母液管路(矿块收液池至母液处理车间)

母液管路为矿块收液池至母液处理车间管路,尽可能使母液自流到母液处理车间,部分采用泵送至母液处理车间。

(5) 现有工艺生产方法

现有原地浸矿采矿工艺过程主要包括二个阶段:

注液浸矿。将硫酸铵溶液作浸矿剂进行浸矿作业,将浸矿液通过注液孔注 入原地浸矿采场,使得浸矿液与原地浸矿采场中的稀土矿进行交换,在此过程 中,原地浸矿采场母液回收量较少,主要作用为使离子型稀土交换到浸矿液 中。

加注顶水。矿体中的稀土矿注液浸取完成后,需要对矿体进行加注顶水处理,加注顶水不再添加硫酸铵和硫酸,而是使用母液车间沉淀工序上清液直接注入注液孔中,将矿体中的稀土母液顶出;当从收液巷道里收集的液体稀土含量低于可回收程度后,停止注水,加注项水完成。

3.3.2 现有母液处理车间

3.3.2.1 现有母液处理工艺

母液处理工艺过程主要包括母液预处理除杂、母液沉淀、压滤脱水。

(1) 母液预处理除杂

将各矿段收液池收集的母液用水泵通过母液输送管线输送到母液处理车间母液集中池。

将母液集中池中的母液泵送到除杂池进行除杂。配制碳酸氢铵溶液投入除杂池中,调节母液 pH 值约 5.2,使母液中的 Al³⁺、Fe³⁺等非稀土离子杂质生成

沉淀,上清液进入沉淀工序。除杂过程产生的除杂渣主要为 Al (OH) 3 和 Fe (OH) 3, 含有一定量的稀土元素,作稀土除杂渣外售。

$$A1^{3+}+3OH^-=A1 (OH) _3\downarrow$$

 $Fe^{3+}+3OH^-=Fe (OH) _3\downarrow$

(2) 母液沉淀

经过除杂后的上清液进入沉淀池进入沉淀工序。

沉淀是向沉淀池中加入碳酸氢铵溶液,搅拌、澄清。母液中的稀土元素生成 Re2(CO₃)₃沉淀,上清液返回硫酸铵配液池,用于浸矿液配制,不外排。

$$2Re^{3+}+3CO_3^{2-}=Re_2(CO)_{3}$$

(3) 压滤脱水

将沉淀下来的碳酸稀土通过板框压滤机进行压滤脱水,滤饼为碳酸稀土产品,装袋外运。压滤产生的滤液进入配液池循环用于生产,不外排。

(4)滤液回收

沉淀池上清液和压滤机滤液统一收集到回收,用硫酸铵和硫酸进行 pH 值的调节,然后用泵输送至高位池循环浸矿使用。

3.3.2.2 现有母液处理车间组成

现有母液处理车间主要由母液集中池、除杂池、沉淀池、压滤车间、仓库等组成。

(1) 母液集中池

浸矿母液从收液沟或收液巷道中流出进入到各个矿段的母液中转池,再输送到母液处理车间的母液集中池。母液集中池的池容按照浸矿液的流量来进行设计,部分母液集中池采用砖混结构,池底和池壁使用防雨毡布进行防渗,部分母液集中池采用土质池底,母液集中池容积一般为100~300m³。

(2) 除杂池

除杂池容积一般为 200~600m³,每个母液处理车间通常有 3~10 个不等,其作用是将母液进行除杂使母液中的 Al³+、Fe³+等非稀土离子杂质生成沉淀。

(3) 沉淀池

沉淀池容积普遍为 200~600m³,每个母液处理车间通常有 3~10 个不等,主要作用是向沉淀池加入碳酸氢铵溶液,使母液中的稀土元素生成碳酸稀土沉

淀。

(4) 压滤间

沉淀下来的碳酸稀土通过板框压滤机进行脱水,滤饼用内塑料薄膜袋,外编织袋包装,即为碳酸稀土产品。每个母液处理车间有压滤脱水间1个。

(5) 配液池

配液池容积普遍为 100~500m³,每个母液处理车间通常有 1~4 个不等,其作用是将沉淀池上清液和压滤机滤液统一收集到浸矿液配液池,用硫酸铵和硫酸进行 pH 值的调节,配制硫酸铵浸矿液,用泵输送至高位池。

3.3.3 现有矿山工程污染源分析

3.3.3.1 废水污染源

现有矿山在正常情况下,在母液处理环节中所产生的废水经收集后能够全部回用,不外排。

单个矿山生产人员较少,不设生活区。在厂区设置旱厕,生活污水用作农 肥和绿化用水,不外排。

3.3.3.2 废气污染源

废气污染源主要是原地浸矿采场施工时产生的扬尘,以及矿山松散物料装卸和堆存时产生的扬尘。

3.3.3.3 固体废物

(1) 岩土

注液孔、收液巷道施工过程将产生岩土。单个注液孔施工产生岩土量较少,就近堆存在注液孔周边,未回填。

收液巷道产生的岩土, 50%能够回填巷道,剩余 50%堆放在巷道口附近低 洼地带。

(2) 除杂渣

母液经过除杂工艺产生除杂渣,每生产 100t 碳酸稀土,除杂渣的产量约为 8t,全部外卖到渣头处理车间。

(3) 生活垃圾

现有矿山由于均为私人承包或乡办、村办企业,对生活垃圾的管理较松,通常采用传统的旱厕进行处理,在矿区内基本没有设置垃圾筒和垃圾中转站。

(4) 渣头渣

现有工程渣头渣全部外卖给建材企业。

3.3.3.4 噪声

现有矿区噪声源主要是母液处理车间压滤机和水泵产生的噪声。声源强度 通常为80~85dB(A)。

3.4 现有矿区环境质量及存在问题

3.4.1 地表水环境质量与存在问题

本次评价在全南县 2 个矿区布设了 11 个地表水监测断面,开展了地表水环境质量现状监测,监测结果表明,全南县各稀土矿区周边地表水除氨氮外,其余各监测因子均达到《地表水环境质量标准》(GB3838-2002)中 III 类水质要求。

全南 2 号点位于玉坑稀土矿西侧下游,超标倍数 2.59~2.63 倍,超标与玉坑稀土矿历史采矿活动有关; 8、9 号监测点位于长城稀土矿东侧下游,10 号监测点位于长城矿区西侧下游,超标倍数 4.12~5.90 倍,超标与长城稀土矿历史采矿活动有关。

3.4.2 地下水环境质量与存在问题

本次评价在全南县 2 个矿区潜层地下水共布设地下水水质监测点 14 个,各监测点在 2021 年 8 月采样监测一次,各矿区地下水监测结果表明:超标因子为 氨氮、pH 值,其他监测因子均未超标。氨氮,超标点位 2 个,最大超标倍数为 14.38 倍,最小为 1.42 倍,结合超标点位所在位置分析其超标原因可能主要与矿区内畜禽养殖、稀土开采历史遗留池浸堆浸工艺、农业化肥等多元化污染物 随大气降水入渗、地表径流或直接注入地下水中有关; pH,超标点位 1 个,pH 值为 6.4,呈弱酸性,其超标原因可能与原生地质环境有关或与历史矿区开采产生的硝化反应有关。

全南县长城稀土矿主要超标因子为氨氮,超标率分别为 12.5%,最大超标倍数分别为 11.28倍;玉坑稀土矿主要超标因子为氨氮,超标率分别为 12.5%、最大超标倍数分别为 0.42倍,其他监测指标均满足《地下水质量标准》(GB/T14848-2017)III类水质标准要求。

3.4.3 生态恢复治理存在问题

现有各矿山目前已经全部停产并恢复矿区生态,经过调查,现有矿山共形成废弃地 68.04hm², 其中赣州稀土矿业有限公司治理 0.27hm², 当地政府治理 67.77hm², 无未治理面积, 见表 3.4。

区县	矿区	废弃地 面积	赣州稀土治理 面积	当地政府治理 面积	未治理 面积	总面积
全南县	长城	58.07	0.27	57.80	0.00	68.04
王 用 云	玉坑	9.97	0.00	9.97	0.00	08.04
总计	-	68.04	0.27	67.77	0	68.04

表 3.4 现有矿山废弃地治理现状

由表 3.4 可知,现有矿山共形成废弃地 68.04hm²,所有废弃地已全部治理。但是在对已治理区的现场调查表明,部分矿区恢复效果不理想,植被覆盖度低,造成地表裸露明显。

3.5"以新带老"措施

3.5.1 地表水

根据监测结果,全南县超标断面氨氮基本小于 10mg/L,未超过江西省地方标准《离子型稀土矿山开采水污染物排放标准》(DB36 1016-2008)一级标准,因此,采用以下以新代老措施:

- (1) 今后矿山开采采用镁盐代替铵盐浸出,可以逐步改善矿区氨氮污染现状; 另外清水淋洗对镁盐新工艺淋洗效果较好,对镁盐工艺开采矿山继续采用清水淋洗。
- (2)对于氨氮浓度小于 15 的各监测断面,应加强对地表水环境质量的监测工作。
- (3)后期矿山采用镁盐工艺开采后,在各矿区小流域经设置了尾水处理设施,保证地表水不被污染。

3.5.2 地下水

以新代老措施:以后矿山开采采用镁盐代替铵盐,可以逐步改善矿区氨氮污染现状;地下水污染防控采用"源头削减控制、过程监控预警、末端防控"的地下水污染防治体系。

①源头削减控制。主要针对矿区内采场和富集站,在注液之前合理配比浸

矿剂及用量、清污分流和分区防渗,在注液过程中控制注液强度和流速、环保 回收井收液、尾水处理达标后回用,注液结束后进行矿块淋洗处理、封堵注液 孔、保留收液和环保系统、实施动态监控和生态修复(复绿)措施;

- ②过程监控预警。分别针对采场和富集站下游、矿区内至外沿途、矿区边界和矿区外围四个层次进行地下水监控管理,同时设置地下水监控风险预警来及时调控生产强度,分析地下水环境在时间和空间层面的变化趋势;
 - ③末端防控。在各小流域出口设置地下水水力截获和抽出处理设施。

"地下水水力截获+抽出处理"设施包含地下水水力截获井、抽出处理设施和截获井上下游的监测井。通过监测井来判定地下水是否存在污染物超标情况,通过布置在适当位置的截获井,将整个地下水流向断面上受污染的地下水全部截获抽至处理系统,采用"中和+化学沉淀"法处理达标后排放。抽出处理系统的处理工艺与淋洗尾水处理工艺相同。

具体详见"地下水专题报告"第5章地下水环境保护措施与环境管理。

3.5.3 生态恢复治理

赣州市全南县包括 2 证内稀土矿山,为长城稀土矿和玉坑稀土矿,两个采矿证内由赣州稀土矿业有限公司负责治理的面积为 0.2666hm²,由地方政府负责治理的面积为 67.7734hm²。

(1) 长城稀土矿

长城稀土矿位于全南县陂头乡星光村长城集(E114°36′04.51″, N 24°58′59.91″)。矿区地貌主要类型为丘陵。该矿区主采用池浸、堆浸和原地浸矿的采矿方式,现主因政策性原因停产,废弃地面积为 58.07hm²。

赣州稀土矿业有限公司对长城稀土矿区域内废弃地开展治理,治理面积分别为 0.2666hm²。主要治理措施为人工复绿,所种植物类型多样,主要为马尾松、杉木、五节芒等,采用水泥沟排水设施,排水系统较完善,该区域留有稀土公司生产厂房,除厂房、道路,上述区域内植被覆盖率较低,其他地区复绿效果良好未发现侵蚀、泥石流、滑坡等安全隐患。

地方政府负责对长城稀土矿区域内废弃地开展治理,治理面积分别为 57.8034hm²。主要治理措施为人工复绿,所种植物类型多样,主要为马尾松、 杉树、泡桐、盐肤木等,采用水泥沟排水设施,排水系统较完善,未发现侵 蚀、泥石流、滑坡等安全隐患。

(2) 玉坑稀土矿

玉 坑 稀 土 矿 位 于 全 南 县 城 厢 镇 和 金 龙 镇 (E114°30′43.41″, N 24°46′40.6″)。矿区地貌主要类型为丘陵。该矿区主采用堆浸和原地浸矿的采矿方式,现主因政策性原因停产,废弃地面积为 9.97hm²。

该区域只有地方政府负责对玉坑稀土矿区域内废弃地开展治理,治理面积分别为 9.97hm²。主要治理措施为自然复绿和人工复绿,所种植物类型多样,主要为马尾松、芒箕、蕨类、杉木等,采用水泥沟排水设施,排水系统较完善,局部有植覆盖率较低的现象,未发现侵蚀、泥石流、滑坡等安全隐患。

全南县稀土矿由赣州稀土矿业有限公司负责治理的废弃地治理现状见表 3.5,由地方政府负责治理的废弃地治理现状见表 3.6。

表 3.5 全南县稀土矿矿区内赣州稀土矿业有限公司负责治理的废弃地恢复状况

名称	治理面 积 (hm²)	治理措施	人工复绿植被种 类及生长状况	治理现状	现场图片	建议意见
长城稀土矿	0.2666	人工复绿	马尾松、杉木、 五节芒等,良好	主要治理措施为人工复绿, 所种植物类型多样,采用水 泥沟排水设施,排水系统较 完善,该区域留有稀土公司 生产厂房,除厂房、道路, 上述区域内植被覆盖率较 低,其他地区复绿效果良好 未发现侵蚀、泥石流、滑坡 等安全隐患。	20 19年6月 16日 1839 25 20 1927 1749 1645 97 11 11,50 20 56 139 70 05 全角量 金利司 下四台 中央部分 174 日 7 日 7 日 7 日 7 日 7 日 7 日 7 日 7 日 7 日	无

表 3.6 全南县稀土矿矿区内地方政府负责治理的废弃地恢复状况

名称	治理面积 (hm²)	治理 措施	人工复绿植被种 类及生长状况	治理现状	现场图片	建议意见
长城稀土矿	57.8034	人工复绿	马尾松、杉树、 泡桐、盐肤木 等,良好	主要治理措施为人工复绿, 所种植物类型多样,主要为 采用水泥沟排水设施,排水 系统较完善,复绿效果整体 良好,但局部地区出现地表 裸露,未发现侵蚀、泥石 流、滑坡等安全隐患。	24 5924.99 (F) (7/1290) F) (F) (F) (F) (F) (F) (F) (F) (F) (F)	地区春 复居 在 以 管 ,
玉坑 稀土 矿	9.97	自复+工绿	马尾松、芒箕、 蕨类、杉木等, 良好	主要治理措施为自然复绿和 人工复绿,所种植物类型多 样,采用水泥沟排水设施, 排水系统较完善,局部有植 覆盖率较低的现象,未发现 侵蚀、泥石流、滑坡等安全 隐患。	2019年5月12日 (107/20 金編書 総利井 第3周3	地区春 复在以春播 一次

4整合(二期)技改项目工程分析

4.1 整合(二期)技改项目基本概况

本项目保留原2个矿权,整合前后矿区基本情况见表4.1。

表 4.1 各区县矿山整合前后一览表

序号	所属县	整合前	整合后
1	人士日	长城稀土矿	长城稀土矿
2	全南县	玉坑稀土矿	玉坑稀土矿

4.2 工程基本情况

4.2.1 项目名称、建设单位、性质、建设地点、建设内容

项目名称: 赣州稀土矿业有限公司稀土矿山整合(二期)技改项目;

建设单位: 赣州稀土矿业有限公司;

性质: 技改;

项目类别:稀土金属矿采选

建设地点:全南县金龙镇、城厢镇:

建设内容:在矿区整合范围内,采用无铵开采工艺,分批次建设富集站,项目共设置 6 个富集站,其中 2 个利用现有富集站进行改造,其余 4 个利用现有车间场地分批次新建,并配套建设高位水池;富集站内配置沉淀富集池、配液池、产品池、母液中转池、氧化镁浆液池、硫酸池、应急池、尾水处理池等工艺池以及原材料仓库、产品仓库、配电房、硫酸储罐房、水泵房、污泥暂存间、固体废物暂存间及办公生活用房等建(构)筑物,设计规模年产稀土富集物***t(折合 REO***t/a)。

4.2.2 建设规模及产品方案

建设规模: 本项目最终建设规模为年产稀土富集物***t(折合 REO**t/a);

产品方案:本项目最终产品为稀土富集物。

4.2.3 服务年限

各矿山设计规模及服务年限见表 4.2。

表 4.2 各矿山设计规模及服务年限

序 号	区县	矿山名称	设计规模(折合 REO, t/a)	服务年限(a)
1	全南县	长城	***	6.3
2	主用云	玉坑	***	13
	台	计	***	/

4.2.4 劳动定员及工作制度

本项目整合后总项目定员 48 人,其中管理人员 6 人。矿山生产工人采用连续工作制,年工作日 330 天,每天 3 班,每班工作 8 小时。管理及服务岗位实行间断工作制。

4.2.5 工程总投资及环保投资

本项目工程总投资约为 16695.14 万元, 其中环保投资为 880 万元, 环保投资占总投资的 5.28%。

4.3 矿区范围及资源特征

4.3.1 矿区范围

整合后全南县涉及矿山 2 处,分别为长城稀土矿及玉坑稀土矿。

(1) 长城稀土矿

全南县长城稀土矿位于全南县城 4°方位,直距约 28km 处。地理坐标东经:***",北纬:***,行政区划属全南县陂头镇。矿区由 7 个拐点圈定,面积1.9988 km²,开采标高 350~250m。矿区拐点坐标见表 4.3。

80 西安坐标系 2000 坐标系 拐点编号 X Y X Y *** *** *** *** 1 *** *** *** *** 2 *** *** *** *** 3 *** *** *** *** 4 *** *** *** *** 5 *** *** *** *** 6 *** *** *** *** 7 *** 开采标高

表 4.3 整合后长城稀土矿矿区拐点坐标

(2) 玉坑稀土矿

全南县玉坑稀土矿位于江西省全南县县城北东 338°方位,相距 1km 处。矿区中心地理坐标为:东经***,北纬***,行政区划隶属于全南县城厢镇和金龙

镇,矿区由7个拐点圈定,面积4.2343km2,开采标高450~275m。跨过去拐点坐标见表4.4。

拐点编号	80 西安	坐标系	2000 坐标系		
7万总编与	X	Y	X	Y	
1	***	***	***	***	
2	***	***	***	***	
3	***	***	***	***	
4	***	***	***	***	
5	***	***	***	***	
6	***	***	***	***	
7	***	***	***	***	
开采标高	**	**	***		

表 4.4 整合后玉坑稀土矿矿区拐点坐标

4.3.2 矿床特征

4.3.2.1 风化壳分布及矿化特征

本项目均为离子型稀土资源,稀土元素主要呈离子吸附状态赋存于花岗岩、混合岩、凝灰熔岩风化壳内,受风化壳面型分布特点影响,离子型稀土赋存一般为面型分布,受地形、地貌影响较大。

矿区属低山丘陵地貌,沟谷纵横发育。由于风化堆积作用大于剥蚀作用,造成山形多呈不规则的浑圆状或馍头状外貌,保存了比较完好的风化壳。

风化壳在垂直剖面上其岩性、结构构造、物质成分存在明显的分带性,自上而下划分为:表土层、全风化层、半风化层。

表土层:又可进一步划分为腐植层、粘土层、粘土化层三个亚层。一般厚约 0.1~2.4m,局部厚度可达 3m。表土层上部缺失或有很薄的腐植土,腐植土呈灰黑色、灰绿色,结构松散,见有植物根系,由亚粘土、亚砂土及腐植质组成;厚度一般 0~0.5m,其稀土含量甚低。腐植土以下为粘土层,大木本植物根系可达此地,颜色多呈土黄色、红褐色,由上而下颜色变浅,铁质减少;该层含粘土成分高,夹杂有花岗岩、花岗斑岩、熔岩、混合岩和石英岩碎块,粘性高,固结性较好。表土层的厚度变化一般是从山脊、山腰往山脚变厚,一般山脊、山腰厚度小于 1m,山脚厚度 1~2m。此层稀土总量品位一般较低,有时接近矿体平均品位。与下部呈渐变关系。

全风层:一般随矿化岩体地貌类型及微地貌部位属性不同而差别较大,一般 1-20m,全风化层呈砖红色、黄褐色、土黄色、少许呈灰白色,质地较均

一,结构松散,造成岩矿物解体,长石被绢云母交代,保留板状、柱状形态,大小呈现 2×4mm,有的已被高岭土所取代,呈土状产出,手搓具滑感,石英颗粒 1~1.5mm,呈灰白色;黑云母多析出铁质,部分已蚀变为白云母片。微裂隙甚为发育,裂隙中往往被粘土矿物充填。稀土元素主要以阳离子吸附在高岭土、埃洛石、水云母等粘土矿物上,稀土 TRE₂O₃ 品位一般变化在 0.002~0.4%之间,矿体主要赋存于该层位的中部。该层具有在山头、山腰厚度大,山脚薄的特点。

半风化层:厚度不详,其颜色、结构构造特征与原岩差别不大,质地较松散到稍成块,手搓不易成粉末状,长石解离很不完全,多呈碎粒状,局部亦发育高岭土化,裂隙宽 1mm 不等,且多为铁质充填。其稀土含量一般很难达到工业要求,为离子吸附型稀土矿体的底板层,其下为新鲜基岩。

上述各层没有截然界线,皆呈渐变过渡关系。

4.3.2.2 矿体赋存部位及分布范围

各矿区稀土矿体均赋存于花岗岩风化壳的全风化层中,全风化层的全部或部分是矿体,矿体的分布与花岗岩全风化层基本一致,且大体连续成片,具有面型风化壳特征,但严格受风化壳范围及地形地貌因素制约,被冲洪积层覆盖的沟谷部位一般不存在矿体,基岩分布区也无矿体存在。矿体一般分布于风化层中上部。

4.3.3 矿体特征

4.3.3.1 矿体产状、形态

离子型稀土基本赋存于全风化层中,风化壳一般呈面型似层状分布,矿体 随风化壳呈似层状断续产出,剖面上受地形起伏变化控制,一般多随地形起伏 而变化,但其起伏变化小于地形;平面上呈面形分布,形态受风化壳形态的控 制。表层粘土层厚薄不一,甚至缺失,矿体一般有表土覆盖,也有部分裸露地 表,且大多分布于山顶及山脊部位,产状随地形起伏而变化。矿体分布范围及 形态产状严格受风化壳的发育程度及地形地貌因素制约。

矿体形态较为简单,平面上多呈不规则多边形及似椭圆状,剖面上呈似层 状产出,产状随地形起伏而变化,倾向与坡向一致。矿体厚度一般山顶最厚, 山脊厚度次之,山坡两翼及坡脚矿体厚度较薄;矿体总体形态较为简单。但就 单矿体而言,其平面形态略为复杂,多呈阔叶状,矿体中部圆滑山包或山梁的部分平面呈椭圆状,而矿体周边则为数条沟谷分割为一些沿山脊或山坡展布支体。

矿体剖面形态较为简单,总体呈似层状波浪起伏。各单矿体剖面上呈盖形,矿体由中部往四周倾斜,沿山脊矿体倾斜较缓,一般为 5°~10°。沿山坡矿体倾斜较陡,多数为 20°~30°,坡角矿体局部达 40°。

总之,本项目为似层状面型表露矿体,形态较为简单,其产状和形态变化 明显受地貌形态的制约。

4.3.3.2 矿体厚度变化特征

本项目矿区矿体垂向上单工程揭露厚度一般为 1.00~26.00m, 最薄厚度约 1m 左右, 最厚约 30m 左右。各块段矿体坡两翼及坡脚矿体厚度较薄, 见图 4 3。

4.3.4 矿石质量特征

4.3.4.1 矿石的基本矿物组成

矿体由花岗岩风化而成,在风化过程中由于原岩矿物成分的不断分解及元素迁移,稀土元素在全风化层中得到相对富集。风化后主要矿物成分粘土矿物为35~55%、石英10~20%、长石25~30%和云母10~25%等矿物组成,其中高岭土类粘土矿物、石英和钾长石,三者约占95%,其次为磁铁矿和白云母等,约占5%,少量至微量难风化稀土矿物及副矿物。

4.3.4.2 矿石化学成分

全南县矿体的全元素分析见表 4.5。

表 4.5 各矿山矿体全元素分析

县区											分析	T结果(10 ⁻²)								
安区	K ₂ O	Na ₂ O	Al ₂ O ₃	Fe ₂ O ₃	SiO ₂	TiO ₂	MnO	MgO	CaO	Со	Ni	Cr	P ₂ O ₅	FeO	Cu	Pb	As	Cd	稀土总量	合
全南	5.92	0.293	14.16	2.09	73.24	0.182	0.032	0.08	0.02	2.51E-04	1.33E-04	1.26E-03	0.008	0.154	4.65E-04	3.25E-03	1.65E-03	<0.1E-04	0.113	96.3

4.3.4.3 矿床稀土配分类型

长城稀土矿中轻稀土占 70%左右。Y2O3 为 13—14%, Eu2O3 为 0.34—0.4%, 说明矿床为低钇低铕轻稀土矿床类型。

4.3.5 资源储量

4.3.5.1 估算的保有资源储量

截止 2020 年 12 月 31 日,全南县 2 个矿区共保有(控制资源量+推断资源量) 类资源储量:矿石量为**kt,TREO 量为**t,SREO 量为**t,各矿区保有资源储量见表 4.6。

县名称	序号	矿山名称	保有矿石量 (kt)	TRE ₂ O ₃ (t)	SRE ₂ O ₃ (t)
△ 士 日	1	长城稀土矿	***	***	***
全南县	2	玉坑稀土矿	***	***	***
	合	计	***	***	***

表 4.6 各矿区保有资源储量

4.3.5.2 设计利用资源储量

本项目资源全部根据资源量类别的不同合理利用,332 类以上资源全部利用,333 类资源按 0.7 可信度系数调整后利用,项目设计利用保有资源矿石量为**kt,TREO量为**t,SREO量为**t,见表 4.7。

县名称	序号	采矿证名称	保有矿石量(kt)	TRE ₂ O ₃ (t)	SRE ₂ O ₃ (t)
人去	1	长城稀土矿	***	***	***
全南	2	玉坑稀土矿	***	***	***
	合计	<u> </u>	14765.5	16368.5	***

表 4.7 设计利用资源储量

4.4 项目组成

本项目工程组成主要由原地浸矿采场工程、富集站工程、环保工程及公辅工程等组成,主要建设原地浸矿采场、6个富集站等。

4.4.1 原地浸矿采场

本项目原地浸矿采场工程组成见表 4.8。

表 4.8 原地浸矿采场工程组成表

工利	工程名称 建设位置		建设内容				
注液 工程	高位池	采场 顶部	高位池,每个容积约 50-500m³,根据日注液量确定容积。高位池 池底和池壁采用防渗膜进行防渗处理,防止浸矿液腐蚀池壁和池 底。设置液位控制和监控探头。				

工程名称		建设位置	建设内容
	注液孔	采场	注液孔分布采用菱形均匀布置,孔径为 φ180mm 左右,孔深为见
	1771/2.10	表面	矿 1~1.5m,网度为 3m×2m,排距 3.0m、孔距 2.0m。
	集液 巷道	采场 底部	在矿体下盘,垂直矿体走向布置集液巷道,巷道平行布置。巷道断面为梯形(上宽 0.8m,下宽 1.2m,高 1.85m),巷道坡度 3~5°,长度根据矿体的延伸而定,间距 15~20m。所有巷道底部 自里向外挖集液沟,沟宽 0.2m、深 0.1m,巷道底部、集液沟均采 用水泥砂浆防渗
收液 工程	导流孔		垂直巷道走向布设导流孔,导流孔孔径 100mm,倾角为 5~8°,4 孔/m,分两层布置,孔距 0.5m,层间距为 0.3m,交错布置,孔深 约为 7~10m。导流孔底部进行水泥防渗。
	集液沟	采场 周边	在矿体的山脚下,沿矿体边界挖一条集液沟。宽约 0.3~0.5m,深约 0.3~0.5m,母液经集液巷道和导流孔汇流到集液沟,再经集液沟流到母液收集池。集液沟沟底及外壁用防渗膜进行防渗处理。
	母液收 集池	采场 周边	采场浸出来的母液,经过集液沟汇集至母液收集池。母液收集池 一般布置在巷道口下部。母液收集池池底和池壁用防渗膜进行防 渗处理,防止腐蚀池壁和池底
清污分流	内部 避水沟	采场 表面	内部避水沟为原地浸矿采场集液沟的内侧布置一圈封闭的截水沟 将雨水进行截流,防止集液沟内原地浸矿采场的雨水汇流进入集 液沟。避水沟为矩形断面,顶宽 0.3m,沟底宽 0.3m,沟深 0.3m,长度根据原地浸矿采场的面积进行布置。
工程	外部 排水沟	采场 周边	外部排水沟为原地浸矿采场集液沟的外侧布置一圈封闭的截水沟 将雨水进行截流,防止集液沟外的雨水汇流进入集液沟,截水沟 为矩形断面,顶宽 0.3m,沟底宽 0.3m,沟深 0.3m,长度根据原 地浸矿采场的面积进行布置。
	浸矿液 线路	富集站至 采场高位 池	浸矿液线路为富集站配液池至采场高位池线路,铺设两条管路, 管路采用 φ110mmPVC 管,根据实际的杨程和流量选定防腐酸水 泵。
	顶水 线路	富集站至 采场高位 池	与浸矿液线路采用同一线路,只是不同时期使用。
管线 工程	矿块注 液管路	采场高位 池至注液 孔	高位池至采场,铺设两条 φ0.11mPVC 管路至支管分路,支管采用 φ0.075mPVC 管,各个支管分路装有闸阀,控制各支路流量,各 支路采用 φ0.025m 塑料管至各个注液孔,用 6 分塑料龙头控制注 液速度,并用 φ0.025m 塑料管由龙头接至孔底,注液方式采用由 上而下,根据矿体的厚度控制每个不同地点的注液量。
	母液线 路	采场至富 集站	母液线路为矿块母液收集池至富集站线路,采用 φ110mmPVC 耐酸耐压管,尽可能使母液自流到富集站母液集中池,不行采用泵送至富集站母液集中池。
堆场	表土堆 存场	富集站	建设表土堆场,堆存富集站建设剥离表土,后期用于复垦土源。
<i>性圳</i>	临时弃 土场	原地浸矿 采场	在原地浸矿采场周边就近设置临时弃土场,用于临时贮存集液巷 道和收液池等施工产生的无法回填的废弃土石方。

4.4.2 富集站

本项目共建设富集站 6 个,其中 2 个富集站利用现有水冶车间进行改造, 其余全部新建,所有富集站分批次错时改造或建设,第一批启动改造并生产的 富集站 4 个,其余车间接替式启动建设生产,严格控制每年启动生产富集站开 采总产量不超过***t/a(以稀土富集物折合成 REO 计)。富集站建设规模及服务年限见表 4.9。利用现有车间进行改造富集站的见表 4.10,单个 150~200t/a 富集站工程组成见表 4.11。

表 4 9	富集站规模及服务年限	ί
4X 7.7	田水叫水形及水刀干帐	٠

县名称	矿区名 称	富集站名称	采矿证 规模 (t/a)	富集站 规模 (t/a)	每年启动 富集站数 量(个)	建设年份	服务年限
	长城	富集站一	***	***	2	第1年	第 2-13 年
		富集站二		***	2	第1年	第 2-3 年
全南		富集站一	***	***		第1年	第 2-4 年
县	玉坑	富集站二	***	***	2	第1年	第 2-11 年
	工儿	富集站三		***	2	第4年	第 5-8 年
		富集站四		***		第8年	第 9-19 年

表 4.10 利用现有车间一览表

序号	现有采 矿权	母液处理车 间	现有车间规 模(折 REO)	保留水冶车间保留情况	规划富集站规模 (折 REO)
			(t/a)		(t/a)
1	长城	杨溪车间	***	全部设备、部分工艺池	***
2	一、以	园岭车间	***	全部设备、部分工艺池	***

表 4.11 单个 150~200t/a 富集站工程组成表

	一 111 上 🖒
工程名称	工程内容
浸出液中转池	设1个400m³浸出液中转池,池底及池壁采用防渗膜进行防渗处理
富集池	设3个300m³富集池,池底及池壁采用防渗膜进行防渗处理
配液池	设 2 个 400m³ 配液池,池底及池壁采用防渗膜进行防渗处理
产品池	设1个200m³的产品池,池底及池壁采用防渗膜进行防渗处理
氧化镁浆液池	设 1 个 10m³ 的氧化镁浆液池,池底及池壁采用防渗膜进行防渗处理
硫酸池	设 1 个 10m³的硫酸储罐,罐外设硫酸池,池底及池壁采用防渗膜进行防
7.5.74.	渗处理
尾水处理池	设3个900m³的尾水处理池,池底及池壁采用防渗膜进行防渗处理
事故应急池	设1个300m³事故应急池,池底及池壁采用防渗膜防渗
压滤包装间	设1台板框压滤机,型号为 XAYJ20/800-UB。将富集的稀土富集物通过板框压滤机进行压滤脱水,滤饼用塑料薄膜袋,外编织袋包装,即为稀土富集物产品
水泵房	注浸矿剂或顶水所用泵功率为 37kw 水泵 3 台,其中 1 台备用;浸出液回收所用水泵功率为 15kw 水泵 3 台,其中 1 台备用;生活用水所用泵功率为 11kw 水泵 2 台,其中 1 台备用;其余小型水泵功率在 5.5-7.5KW 的水泵共 4 台。
配电室	一般为 100-150m ² ,设变压器 1 台,规格为 250 kVA,配电室样式为砖混结构,地面混泥土浇筑,外围地面做好排水系统
原材料仓库	各富集站原材料仓库依矿山实际产能而定,一般为300-400m²,样式为砖混或板房框架结构或顶棚式钢架结构,地面混泥土浇筑,外围地面必须做好排水系统,配备灭火器。

产品仓库	各富集站产品仓库依矿山实际产量而定,一般为300-400m²,样式为砖混或板房框架结构或顶棚式钢架结构,地面混泥土浇筑,外围地面必须做好排水系统,配备灭火器。
污泥暂存间	各富集站设置一个污泥暂存间,一般为 5-8 m², 储存量约 70t, 用于暂存 尾水处理产生的污泥,污泥间防渗措施按照《危险废物贮存污染物控制标 准》(GB18597-2001)设计和建设
硫酸罐房	各富集站硫酸罐房一般为 20-30m²,样式为砖混结构,墙体及地面做好防渗措施,外围地面必须做好排水系统。设 1 个硫酸储罐,容积为 10 m³
办公生活区	办公室、会议室、倒班宿舍及浴室等。一般面积 300-500m²,样式为砖混或板房框架结构,地面混泥土浇筑,外围地面必须做好排水系统,配备灭火器。

4.4.3 环保工程

本项目环保工程见表 4.12。

表 4.12 整合项目环保工程组成表

	工程名称		建设位置	环保工程内容
		胡废水	富集站	母液处理环节产生的沉淀池上清液、压滤车间压滤废水 汇入回收池 (硫酸镁配液池), 经调节 pH 值和硫酸镁浓 度后,输送到采场高位水池作为浸矿液重复使用,不外 排。
	生活污水		富集站	现场人员较少,设置化粪池,少量生活污水经处理后用于周边林地施肥。
废水	内部边		采区	采场集液沟上部沿山体走势修建避水沟,以防雨水流到 集液沟降低母液浓度
八	外部排	非水沟	采区和富 集站	采场集液沟外侧高出地面 20-30cm, 防止外侧雨水汇至 集液沟; 富集站设置排水沟。
	尾水如	青洗期 让理利 目	富集站	清洗期淋洗尾水,收集后少部分直接用于第二批次采场 浸矿补充水,大部分尾水经处理后(钙矾石法去除硫酸 根和镁)循环利用于原采场清水清洗工序。无可利用矿 块时,处理后的尾水可以用作临近富集站配液用水,不 外排。
	防渗	工程	原地浸矿 采场、富 集站	对原地浸矿采场的集液沟和集液巷道采取防渗措施,并 对富集站的池体全部采用防渗材料进行防渗处理。
	清水	清洗	原地浸矿 采场	收液结束后,利用注液系统对采区进行清水清洗
地下水	原地	矿块 级	环保回收 井	矿体边缘设置 2-3 个环保回收井,井深视到潜水层或见基岩为准,一旦发现有母液渗下,从环保回收井抽水送至富集站处理利用。
	浸矿 采场	3X	监测井	在矿块下游布置 2-3 个监测井,井深为潜水面以下 1-2m,直径 1m,实时监测水质
		流域	截获井	在矿区各小流域出口处设置水质截获井
		级	监测井	在截获井下游设置监测井,监控水质
	富集站		监测井	在富集站下游设置地下水长期监测井
废气	遮挡设施		物料	给富集站的散料堆场和稀土产品建仓库,防止扬尘产生
噪声	降噪		富集站	对富集站的压滤设备、水泵等噪声设备采取隔声、减振 等措施

工程名称		建设位置	环保工程内容		
	注液孔岩土	原地浸矿 采场	单个注液孔施工产生岩土量较少,就近装袋堆存在注液 孔周边,待浸矿完毕后,回填注液孔		
固体 废物	生活垃圾	富集站	生活垃圾收集后定期运至当地环卫部门指定场所统一处 理		
	尾水处理污 泥	富集站	尾水处理过程产生的污泥存放在污泥暂存间。污泥暂存 间按照 GB18597 要求防渗		
土壤	清水清洗+ 原地浸矿 监测井 采场		同地下水		
	防渗工程	富集站	同地下水		
	水土保持 富集站		富集站地面全部硬化,并在陡坡区域设置相应的护坡工 程;在富集站设排水沟。		
生态	生态恢复	原地浸矿 采场、富 集站	在原地浸矿采场完成采矿工作后,注液孔进行封孔,在 富集站服务期满后对富集站进行生态恢复。		
	防滑坡	采场	控制注液速度		
	原地浸矿采 场事故池	原地浸矿 采场	原地浸矿采场地下水流向下游低洼处按流域设事故池, 原则上每个流域原地浸矿采场设1个		
环境 风险	富集站事故 应急池	富集站	在富集站山脚低凹处设1个事故应急池		
	母液输送管 线风险措施	母液输送 管线及沿 线	母液输送管线每隔一定距离,设置止回阀和泄压孔		

4.4.4 公辅工程

本项目公辅工程见表 4.13。

表 4.13 本项目公辅工程组成表

工程名称	主要内容				
生产供水	本项目最多同时有 29 个富集站运行,其总用水量为 101950.76 m³/d,其中 生产新水量为 7730.49m³/d,生活用水 70.76m³/d,循环水用量为				
	94149.51m³/d,工业用水重复利用率为 92.41%。				
生活供水	生活供水与生产供水一起从地表水体中取水。				
排水系统	原地浸矿采场、富集站周围设排水沟,雨污分流,自然排放天然雨水,矿 山生产用水全部循环使用,正常情况无外排废水。				
供电系统	新建的富集站供电由当地供电局供电。				
运输	矿山外部运输主要是稀土产品、硫酸、硫酸镁、氧化镁等物品的运输。运 输均由厂家运送,道路均利用现有道路				

4.4.5 原材料消耗及贮存

本项目所需的原材料主要有七水硫酸镁、氧化镁、浓硫酸等,均为常规化工产品,项目主要原材料情况见**表 4.14**。

表 4.14 本项目原材料及消耗表

序	药剂名称	单位用量	年用量	药剂 贮存方式			
号	约刑石物 	t/tREO	t/a	形态	设备类型	大小/m³	数量
1	70%浓硫酸	1.41	1269	液态	储罐	10	6
2	七水硫酸镁	13.95	12555	固体	原料仓库		

4.5 项目总体布局及占地

4.5.1 总体布局

各稀土矿区主要由原地浸矿采场、富集站、表土堆存场、临时弃土场等组成。矿区内共设置 6 个富集站,在各新建富集站附近设 1 个表土堆存场,堆存富集站剥离的表土,表土用于矿山复垦。集液巷道等工程掘进产生的废弃土石方,部分回填,部分堆存到临时弃土场。矿山不设置生活区,在富集站内设有倒班宿舍。长城稀土矿矿区总平面布置图见图 4 4、玉坑稀土矿矿区总平面布置图见图 4 5。

4.5.2 项目占地

整合项目工程占地面积总和为 372.37hm²。原地浸矿采场的占地面积虽然很大,但是实际上其主要破坏为原地浸矿采场工程造成的破坏,考虑该部分为原地浸矿采场实际需要占地面积,其余仅为扰动面积,因此本项目实际破坏面积为 24.797hm²。项目占地类型主要为林地。占地情况统计见表 4.15。

表 4.15 本项目占地情况统计表

区县	矿区	富集站		原地浸矿采场						表土堆场	临时弃土场
	19 12	名称	占地面积	服务矿体面积	高位池	注液孔	内部避水沟	排水沟	收液沟	衣工堆场	
全南县	长城	富集站一	0.88	57.86	0.083	0.25	0.475	1.011	0.527	0.22	0.278
		富集站二	0.91	11.75	0.012	0.051	0.099	0.206	0.105	0.228	0.057
	玉坑	富集站一	1.27	59.39	0.017	0.257	0.499	1.039	0.531	0.318	0.287
		富集站二	1.29	118.59	0.038	0.513	0.964	2.056	1.083	0.323	0.57
		富集站三	1.3	40.61	0.015	0.176	0.332	0.708	0.373	0.325	0.195
		富集站四	1.26	77.26	0.019	0.334	0.605	1.316	0.706	0.315	0.371
	小计		6.91	365.46	0.184	1.581	2.974	6.336	3.325	1.729	1.758
	占地面积合计		372.37								
	实际破坏面积			24.797							

4.6 主要技术经济指标

本项目主要技术经济指标见表 4.16。

表 4.16 本项目主要技术经济指标

序号	指标名称	单位	数量	备注
1	设计规模			
1.1	年产离子吸附型稀土	t/a	***	以REO计
2	产品产量			
2.1	富集物折合成稀土氧化物	t/a	***	以REO计
3	主要原辅材料消耗			
3.1	七水硫酸镁	t/a	***	
3.2	氧化镁	t/a	***	
3.3	硫酸	t/a	***	回调 pH
4	项目总投资	万元	16695.14	
4.1	建设投资	万元	14392.36	
4.2	流动资金	万元	2302.78	
5	财务指标			
5.1	年总成本	万元	4550.61	
5.2	年营业收入	万元	13630.39	
5.3	年利润总额	万元	4471.65	
5.4	年净利润	万元	3353.74	

4.7 原地浸矿采矿工艺

4.7.1 无铵原地浸矿工艺流程

4.7.1.1 无铵新工艺特点

本项目采用具有自主知识产权的无铵提取新工艺,通过在浸矿剂、富集沉淀、除杂等关键环节的创新,减少了传统硫铵-碳铵工艺稀土反吸附的数量、解决了沉淀除杂稀土损耗问题,具有对稀土离子置换效果好、贫富兼采、无铵化等特点,基本可实现稀土资源一次性开采,有效提高综合回采率和产品质量。

4.7.1.2 工艺流程说明

本项目采矿方法为原地浸矿,采用硫酸镁为无铵新型浸矿剂,通过在矿块山体布置注液孔(井)进行注液,在山体矿块下方布置集液巷道+导流孔收液方式进行收液,然后通过集液沟汇流进入浸出液中转池,稀土浸出液在浸出液中转池进行初步的澄清后通过管道泵送至富集站进行稀土沉淀回收。

4.7.1.3 原地浸矿的浸矿机理

离子型稀土原地浸矿是用浸矿液从天然埋藏条件下的非均质矿体把呈吸附

态的稀土离子交换浸出并回收稀土元素的新型采矿方法。

在离子型稀土矿床中 57.2%-89.9%左右的稀土矿物呈阳离子状态吸附于高岭土、蒙脱石等粘土矿物表面。这些具交换状态的稀土阳离子遇到交换势能更大的阳离子时,就可被交换下来,反应式如下:

【粘土矿物】m.nRE³⁺+3nA⁺→【粘土矿物】m.3nA⁺+nRE³⁺

当以硫酸镁作浸矿液时, 其交换机理是:

2(高岭土)⁻³RE⁺³+3(Mg)⁺² (SO4) -2→2(高岭土)⁻³3(Mg)⁺²+ RE2⁺³(SO4)3⁻²

在原地浸矿中,浸矿液通过注液井(孔),在一定的水头压力下,连续不断地注入矿体,溶液中交换势更大的阳离子与呈吸附态的稀土离子发生交换作用,使稀土离子进入浸出液。这个多向固液交换体系的过程是:渗透→扩散→交换→再扩散→再渗透,扩散动力是浓度差。不断注入矿体中的溶液(或项水)挤出已发生交换作用的稀土浸出液。

矿石是由颗粒矿物和孔隙组成的非均质体,在任何一个均质体中,质量传递都要经历两个阶段,即起反应的分子移至正在发生反应的表面,产生非均质化学反应,以及已作用过的分子离开反应区。因此要求选择合适的浸矿液。而就扩散过程而言,扩散速度与反应剂的扩散系数,沿扩散方向浸矿液和浓度梯度,液—固相界面的面积等有关。因此,要求浸矿液具有合适的浓度,合适的固液比,矿石有一定的渗透性,注液要维持一定的水头压力以保证溶液流速,并要不断的注液,包括注项水,以便扩大并不断更新液固界面的面积。可见,在离子型稀土原地浸矿工艺中只要满足了以上要求,就能够用浸矿液从矿体中浸出稀土。

根据地下水动力学的理论,稀土矿的原地浸矿,由于浅井(孔)注液最终会形成稳定的渗透锥体,渗浸的范围也就会局限在一个稳定的范围以内,因此在这个稳定的范围之内,只要在注液井(孔)的布置、集液工程的设置以及作业矿块顺序等方面,考虑到渗透锥体的范围就行。如果存在隔水层,且它在坡脚出露,由于沿其层面流动的浸出液会从坡脚流出,这时,只要在坡脚设置集液沟及导流孔,就可将浸出液汇集回收,这就是自然收液方案(现龙南稀土矿主要采用的方案)。但是,如果矿体底板隔水层深度很大,在坡脚低于当地侵蚀基准面,或在坡脚处矿体底界面在潜水面以下,或隔水层(或矿体底板)起伏

变化,倾向也变化,或存在较大的断裂、破碎带等泄漏通道,这时就不能仅靠集液沟集液井自然收液,必须采取人造底板收液措施,否则浸出液将严重流失。

4.7.2 原地浸矿开采过程

原地浸矿采矿工艺过程主要包括四个阶段:

(1) 注液浸矿

硫酸镁溶液通过注液孔注入原地浸矿采场中,使得浸矿液与原地浸矿采场中的原矿进行交换,在此过程中,原地浸矿采场母液回收量较少,主要作用为使离子型稀土交换到浸矿液中,浸矿时间约2个月。

(2) 加注顶水

矿体中的稀土矿注液浸取完成后,对矿体进行加注顶水处理,加注顶水不再添加硫酸镁,而是使用回收液直接注入注液孔中,将矿体中的稀土母液顶出;当从集液巷道里收集的母液稀土含量低于可回收程度后,停止注水,加注顶水完成,加注顶水约3个月。

(3) 清水清洗

在加注顶水完成后,原地浸矿采场的土壤内还含有硫酸镁,存在潜在环境 风险,因此在加注顶水完成后,要求矿山进行加注清水清洗,然后利用原地浸 矿采场的收液系统进行尾水收集,将收集的清洗废水全部回用到富集站,尾水 中硫酸镁浓度较高,直接通过车间周转后用于第二批矿山的生产补加水,清水 淋洗至尾水达标为止。

(4) 封孔闭矿

清水清洗完成后将注液孔周边的废弃土石方(岩土)回填,恢复植被,封孔闭矿即完成。

4.7.3 原地浸矿采场注液工程

注液工程主要由高位池和注液孔组成。

(1) 高位池

高位池,每个容积约 50-500m³,根据日注液量确定容积。高位池铺设输液主管道、注液接口设施。高位池池底和池壁采用防渗膜进行防渗处理,防止腐蚀池壁和池底。

(2) 注液孔

注液孔分布采用菱形均匀布置,孔径为 φ180mm 左右,孔深为见矿 1~1.5m,网度为3m×2m,排距3.0m,孔距2.0m,采用菱形均匀布置。

(3) 注液管网

注液管道的管型及数量根据拟采矿块单体设计确定,每个矿块的浸矿液和顶水使用同一套管网系统。从富集站配液池至高位池铺设两条管路,采用φ110mmPVC 耐酸耐压管;高位池至采场,铺设多条管路至支管分路,各支路采用φ20mmPVC 耐酸耐压管至各个注液孔。注液管网采用地上敷线方式进行敷设,一般沿山脚沟边、乡村道路边放置,可移动,可重复使用。

4.7.4 原地浸矿收液系统

收液工程主要由集液巷道、导流孔、集液沟、母液收集池、环保回收井及 监测井组成。

(1) 集液巷道

第一级收液系统。矿体下盘布置集液巷道,布置方式为垂直矿体走向,由矿体上盘(山坡坡面)打通矿体至下盘脉外半风化花岗岩,间距一般为 15-20m,巷道断面为梯形(上宽 0.8m,下宽 1.2m,高 1.85m),底板均采用防渗漏处理,坡度为 3~5°。所有巷道底部自里向外挖集液沟,沟宽 0.2m、深 0.1m,巷道底部、集液沟均采用水泥砂浆防渗。

(2) 导流孔

第二级收液系统。集液巷道两侧布置导流孔,导流孔方向为垂直集液巷道 走向,孔径为 φ100mm,倾角为 5-8°,4 孔/m,分两层布置,孔距 0.5m,层间 距为 0.3m,交错布置,收集渗漏的母液。导流孔底部进行水泥防渗。

(3)集液沟。

在集液巷道口沿矿体边界开挖一条集液沟,延伸至母液收集池。宽约 0.3~0.5m,深约 0.3~0.5m,母液经集液巷道和导流孔汇流到集液沟,再经集液沟流到母液收集池。集液沟沟底及外壁用防渗膜进行防渗处理。

(4) 母液收集池

采场浸出来的母液,经集液沟汇集至母液收集池,再用管道将母液送至富 集站。母液收集池一般布置在巷道口下部。母液收集池池底和池壁用防渗膜进 行防渗处理, 防止腐蚀池壁和池底。

(5) 环保回收井

矿体边缘设置 2-3 个环保回收井,直径约为 300mm,孔距为 5~10m,井 深视到潜水层或见基岩为准,一旦发现有母液渗下,从抽水井抽水送至富集站处理利用。

(6) 监测井

在矿块下游布置若干个监测井,井深为潜水面以下 1-2m,直径 110mm,监测井一旦发现超标,即通过环保回收井进行回收至富集站。

4.7.5 原地浸矿清污分流工程

(1) 内部避水沟

避水沟为原地浸矿采场集液沟的内侧布置一圈封闭的截水沟将雨水进行截流,防止原地浸矿采场内的雨水汇流进入收液系统。避水沟断面为矩形,断面参数不得小于以下参数值:沟顶宽 0.3m,沟底宽 0.3m,沟深 0.3m,水力坡度不小于 1%;由高到低随汇水增加扩大截水沟过水断面。

(2) 外部排水沟

排水沟为原地浸矿采场集液沟的外侧布置一圈封闭的截水沟将雨水进行截流,防止收液系统外的雨水汇流进入收液系统。截水沟断面为矩形,断面参数不得小于以下参数值:沟顶宽 0.3m,沟底宽 0.3m,沟深 0.3m,水力坡度不小于 1%;由高到低随汇水增加扩大截水沟过水断面。

4.7.6 原地浸矿工艺指标

本项目原地浸矿开采工艺采矿技术指标见表 4.17。

序号	指标	单位	数量
1	原地浸矿采场母液回收率	%	≥92.5
2	富集站稀土回收率	%	≥95
3	总回收率	%	≥85

表 4.17 原地浸矿开采工艺采矿技术指标

4.7.7 开采顺序与首采矿块

4.7.7.1 开采顺序

根据地质储量调查报告圈定的矿体形态、规模、分布特点及已确定的开采方式,矿区内各采区总体开采顺序:以"小流域水文地质单元"开采指导思想,

结合资源空间分布、地形等因素综合考虑对整合二期技改项目矿区进行采区划分,其中全南县矿区 6 个采区,原则上每个采区设置一个富集站,共设置 6 个富集站。各矿区总体开采顺序见表 4.18。

表 4.18 矿区总体开采顺序表

区县	矿区	服务期内动用矿块面积(hm²) 富集站										合计									
区公	五 4 位 届 年 年	自朱 垍	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	百日
	长城	富集站一	5.66	4.67	2.69	5.43	5.66	5.5	7.71	4.3	2.9	6.7	5.06	1.58							57.86
	区坝	富集站二	10.4	1.35																	11.75
全南县		富集站一	30.92	21.96	6.51																59.39
上	玉坑	富集站二	15.79	12.41	8.55	7.27	13.56	6.39	12.83	11.31	21.59	8.89									118.59
	工儿	富集站三	0	0	0	12.66	11.32	13.25	3.38												40.61
		富集站四	0	0	0	0	0	0	0	11.03	5.51	30.16	13.27	1.98	4.46	2.02	3.05	2.5	1.94	1.34	77.26

4.7.7.2 首采矿块

根据已确定的开采顺序,首采地段应根据各生产富集站位置、服务范围、 周边矿块的分布特点等要素,按照由上游往下游、由近及远的规律来进行合理 的安排,各矿区首采矿块见表 4.19。

序号	区县	矿区	富集站	首采矿块			
21		下 把發十 <u></u>	富集站一 II-2-333-保 2				
22	全南县	长城稀土矿 ————————————————————————————————————	富集站二	III-2-D333-保 1			
23	生用云		富集站一	II-122b-保 8			
24		玉児神工型	富集站二	II-D332-保 6			

表 4.19 各矿区首采矿块

4.8 富集站处理工艺

4.8.1 母液处理工艺流程

(1) 富集沉淀工序: 母液经收液系统输送至富集池。在富集池中,加入氧化镁浆液(固液比 30%),并不断用气泵搅拌均匀,控制氧化镁浆液用量(氧化镁和稀土比约 2:1)至池中母液 pH值为7左右即可,池中溶液经澄清后,沉淀物为氢氧化稀土及少量杂质(氢氧化铝、硅酸盐等),上部的溶液为上清液,上清液可放到配液池处理后重新配液或作为顶水循环使用。

(2) 压滤工序: 富集后的沉淀物为稀土富集物及少量杂质, 经板框压滤后即为本项目的产品稀土富集物, 经压滤脱水后即可包装入袋, 进入产品库外售, 压滤后的压滤水返回配液池重新配液或作为顶水循环使用。

母液处理工艺流程见图 49。

4.8.2 富集站组成及典型富集站平面布置图

各矿区各富集站主要工艺池组成见表 4.20。各富集站年度生产规模见表 4.21。

表 4.20 各富集站工艺池组成

				主要项目														
区县	矿区	富集站 (车间) 名称	沉淀	富集池	酉	上液池	稀土	产品池	母液	中转池	氧化铂	美浆液池	硫	酸池	应	急池	尾水	.处理池
			数量/个	总容积/m³	数量/个	总容积/m³	数量/个	总容积/m³	数量/个	总容积/m³	数量/个	总容积/m³	数量/个	总容积/m³	数量/个	总容积/m³	数量/个	总容积/m³
	长城	富集站一	2	800	2	500	1	150	1	300	1	10	1	10	1	400	2	800
	10.400	富集站二	2	800	2	500	1	150	1	300	1	10	1	10	1	400	2	800
人去日		富集站一	3	1500	2	600	1	200	1	300	1	20	1	20	1	500	3	1500
全南县	玉坑	富集站二	3	1500	2	600	1	200	1	300	1	20	1	20	1	500	3	1500
	上 上りし	富集站三	3	1500	2	600	1	200	1	300	1	20	1	20	1	500	3	1500
		富集站四	3	1500	2	600	1	200	1	300	1	20	1	20	1	500	3	1500

表 4.21 各富集站年度生产规模表

	生产规模(t/a,折 REO) 区县 矿区 富集站										合计												
区安	会 1 7 C 日 苗采珀			台朱 均	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
	V. 4:A:	富集站一	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***		
	长城	富集站二	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***		
△去日		富集站一	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***		
全南县	てや	富集站二	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***		
	玉坑	富集站三	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***		
		富集站四	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***		

4.8.3 富集站主要生产设备

各矿山各富集站主要生产设备见表 4.22。

主要设备 序 富集站(车 板框压滤 发电机 矿区 空压机 变压器 水泵 搅拌桶 묵 间) 名称 设备 组 (台) (台) (套) (台) (台) (台) 富集站一 1 1 12 1 1 3 长城 1 富集站二 12 1 1 1 1 3 1 富集站一 1 15 1 1 3

1

1

15

15

15

1

1

1

3

3

1

表 4.22 各富集站主要生产设备表

4.8.4 富集站建设时间

玉坑

富集站二

富集站三

富集站四

本项目所包含 2 个矿区 6 个富集站,首批建设 4 个富集站,其余 2 个富集站根据富集站的生产能力及其服务范围内矿体的具体情况接续建设,总的生产规模不超过***t/a(REO)。

4.9 公辅工程

2

4.9.1 供排水

(1) 用水量

根据《生活污染源排污系数手册》,赣州地区农村生活用水量为 203L/人· 天, 折污系数 0.85。每个车间约配置 12 人,每个车间生活用水量约为 2.44m³/d,生活污水产生量约 2.1m³/d。

本项目最多同时有 4 个富集站运行,最多总用水量为 14769.76m³/d, 其中生产新水量为 1119.98m³/d, 生活用水 9.76m³/d, 循环水用量为 13640.02m³/d, 工业用水重复利用率为 92.41%。矿山正常生产时既有生产矿块又有淋洗矿块, 此时矿山用水量最大,各矿区用水量情况见表 4.23。

区县	矿区	总用水量	生产用水量	$\stackrel{1}{\mathbb{E}}$ (m^3/d)	生活用水量
公 公	14) 🗠	(m^3/d)	新水量	循环水量	(m^3/d)
A == E	长城稀土矿	4924.88	373.32	4546.68	4.88
全南县	玉坑稀土矿	9844.88	746.66	9093.34	4.88
	合计	14769.76	1119.98	13640.02	9.76

表 4.23 整合 (二期) 技改项目用水量一览表

①长城稀土矿

长城稀土矿设计总采矿规模*t/a,每年2个富集站生产,单个富集站采矿规模*t/a。

单个富集站总用水量为 2462.44 m^3 /d, 其中生产用水总用水量 2460 m^3 /d, 新水量 186.66 m^3 /d, 循环水量 2273.34 m^3 /d, 工业用水重复利用率为 92.41%; 生活用水量 2.44 m^3 /d。

全矿总用水量为 4924.88m³/d, 其中生产用水总用水量 4920m³/d, 新水量 373.32m³/d, 循环水量 4546.68m³/d, 工业用水重复利用率为 92.41%; 生活用水量 4.88m³/d。

②玉坑稀土矿

玉坑稀土矿设计总采矿规模*t/a,每年2个富集站生产,单个富集站采矿规模*t/a。

单个富集站总用水量为 4922.44 m^3 /d, 其中生产用水总用水量 4920 m^3 /d, 新水量 373.33 m^3 /d, 循环水量 4546.67 m^3 /d, 工业用水重复利用率为 92.41%; 生活用水量 2.44 m^3 /d。

全矿总用水量为 9844.88m³/d, 其中生产用水总用水量 9840m³/d, 新水量 746.66m³/d, 循环水量 9093.34m³/d, 工业用水重复利用率为 92.41%; 生活用水量 4.88m³/d。

(2) 取水水源

生产及生活用水均在富集站周边地表溪流取水。

(3) 排水

生产期:沉淀池上清液和压滤机压滤废水汇入配液池,在配液池中通过调节 pH 和硫酸镁浓度后,输送到高位池做浸矿液重复利用,不外排;矿山不设集中生活区,富集站设置化粪池,用作农肥不外排。

清洗期:浸采完成后对采区进行淋洗,将采区矿体中残留的硫酸根、镁等 淋洗出来,收集后少部分直接用于第二批次采场浸矿补充水,大部分尾水经处 理后(钙矾石法去除硫酸根和镁)循环利用于原采场清水清洗工序,不外排。

4.9.2 供电工程

矿山主要用电设备有:空压机、压滤机和水泵。矿山供电主要由当地供电

局进行供电。

4.9.3 道路工程

本项目富集站均利用现有富集站或在现有车间位置进行新建,不需要新建 道路,利用原有道路即可。

4.9.4 内外部运输

(1) 外部运输

本项目最多 29 个富集站同时生产,总运输量为***t/a,其中运入量约 ****t/a,运出量约***t/a。本项目外部运入的物料主要为富集站所需的硫酸镁、氧化镁、硫酸;主要运出的物料为富集站生产的稀土富集物产品。外部运输量见表 4.24。

区县	矿山	运出量(t/a)	运入	量(t/a)		
<u> </u>	14) Ш	稀土富集物	硫酸镁	氧化镁	硫酸	
全南县	长城稀土矿	***	***	***	***	
土用云	玉坑稀土矿	***	***	***	***	
	合计		***	***	***	
	总运输量		***			

表 4.24 外部运输量一览表

(2) 内部运输

本矿山采用"原地浸取"工艺,各种液体的内部输送主要采用塑料管道,富集站制备的硫酸镁溶液由水泵通过管道从配液池扬送至矿山的高位池,再由管道输送至各注液孔。矿山各收液巷道口母液收集池内的稀土母液由管道送至富集站的母液中转池。

(3)运输方案

外部运输均由厂家运送或外委车辆运输。

4.10 物料平衡分析

4.10.1 水平衡

4.10.1.1 生产期(仅有原地浸矿矿块)水平衡

各矿山生产期第 1 年时仅有原地浸矿矿块,无清水淋洗矿块,该时期水平 衡以矿山主要生产规模*t/a、*t/a 为例,水量平衡见表 4.25。

表 4.25 生产期各规模富集站水量表

车间规模	类别	水量(m³/d)						
十四州朱	天州	总用水量	新水量	循环水量	抽回泄漏水量			
	生产用水	1230	94.41	1043.34	92.25			
*t/a	生活用水	2.44	2.44					
	合计	1232.44	96.85	1043.34	92.25			
	生产用水	2460	188.83	2086.67	184.5			
*t/a	生活用水	2.44	2.44					
	合计	2462.44	191.27	2086.67	184.5			

4.10.1.2 生产期及清水清洗期水平衡

清水淋洗期同时存在浸矿矿块及淋洗矿块,该时期水平衡以主要生产规模 *t/a、*t/a 为例, 水量平衡见表 4.26。

表 4.26 生产期及淋洗期各规模富集站水量表

车间规模	类别		水	量 (m³/d)	
十四/%疾	天刑	总用水量	新水量	循环水量	抽回泄漏水量
	生产用水	2460	186.66	2088.84	184.5
*t/a	生活用水	2.44	2.44		
	合计	2462.44	189.1	2088.84	184.5
	生产用水	4920	373.33	4177.67	369
*t/a	生活用水	2.44	2.44		
	合计	4922.44	375.77	4177.67	369

4.10.1.3 清水清洗期(只有清水清洗矿块)水平衡

清水淋洗期(只有清水清洗矿块)时仅有清水清洗矿块,无生产矿块,该 时期水平衡以矿山主要生产规模*t/a、*t/a 为例,水量平衡见表 4.27。

表 4.27 淋洗期各规模富集站水量表

车间规模	类别		水	量 (m³/d)	
十四州朱	天剂	总用水量	新水量	循环水量	抽回泄漏水量
	生产用水	1230	92.25	1045.5	92.25
*/a	生活用水	2.44	2.44		
	合计	1232.44	94.69	1045.5	92.25
	生产用水	2460	184.5	2091	184.5
*t/a	生活用水	2.44	2.44		
	合计	2462.44	186.94	2091	184.5

4.10.2 硫酸根平衡

本次评价以玉坑***/a REO 富集站和对应采区为对象分析硫酸根的物料平 衡,评价过程包括生产期(注液和顶水约5个月)和淋洗期(约3个月),按采 区接续生产方式进行分析。硫酸根的来源主要有:

(1) 硫酸镁

t/a REO 富集站在生产中使用硫酸镁t/a, 折合为硫酸根***t/a。

(2) 硫酸

/a REO 富集站在生产中使用 70%硫酸t, 折合为硫酸根***1t。

(3)新水

生产期间和淋洗期间从临近的河流中取水使用,水中的硫酸根浓度取柯树塘矿区周边地表水硫酸根监测值的平均值 13.83mg/L,注液期的新水用量为 373.33m³/d,淋洗期的新水量为 184.5m³/d,核算水中的硫酸根 1t。

硫酸根的去处主要有:

(1) 稀土富集物

对于 300t/a REO 富集站产生的稀土富集物量为***t, 富集物中的硫酸根含量约***g/kg, 核算稀土富集物中的硫酸根量为***t。

(2) 浸矿渗漏

生产浸矿过程的渗漏量为 369m³/d,浸矿收液按 5 个月核算,渗漏的硫酸根浓度同母液中硫酸根浓度(取平均值)为 4711.5mg/L,核算浸矿渗漏的硫酸根为 260.78t,主要去向包括地表水、地下水和矿体下盘残留。

(3) 淋洗渗漏

清水淋洗过程的渗漏量为 184.5m³/d, 清水淋洗按 3 个月核算, 渗漏尾水中的硫酸根浓度取 1273mg/L, 核算淋洗渗漏的硫酸根为 21.14t, 主要去向包括地表水、地下水和矿体下盘残留。

(4) 淋洗尾水接续利用

清水淋洗周期按 3 个月核算,淋洗用水量 2460 m³/d,收回尾水量 2275.5m³/d,淋洗后产生的尾水中含硫酸根和镁,为减少浸矿剂用量,用作下个矿块的配液,尾水中硫酸根浓度为 1273mg/L,核算淋洗尾水接续利用到下个矿块的硫酸根为 260.7t。

(5) 矿体存留

采场矿体和土壤在浸矿过程中吸附了绝大多数硫酸根,部分在矿体内通过物理和化学作用参与成矿成岩构造,部分以游离态吸附存留在土壤中,根据物料平衡核算,矿体内存留的硫酸根量为3402.17t。

硫酸根平衡见表 4.28。

表 4.28 硫酸根平衡表

	投入			产出	
物质	质量/t	折合硫酸根/t	物质	质量/t	折合硫酸根/t
七水硫酸镁	4809	3847.20	稀土富集物	1500	37.13
70%硫酸	195	133.71	浸矿渗漏	55350	260.78
新水	72604.5	1.00	淋洗渗漏	16605	21.14
			淋洗尾水回用	204795	260.70
			矿体及土壤吸附		3402.17
合计		3981.92			3981.92

4.10.3 镁平衡

本次评价以玉坑 300t/a REO 富集站和对应采区为对象分析镁的物料平衡, 评价过程包括生产期(注液和顶水约 5 个月)和淋洗期(约 3 个月),按采区接续生产方式进行分析。镁的来源主要有:

(1) 硫酸镁

300t/a REO 富集站在生产中使用硫酸镁 4809t, 折合为镁 961.8t。

(2) 氧化镁

对于 300t/aREO 富集站在生产中使用氧化镁 324t, 折合为镁 194.4t。

(3)新水

生产期间和淋洗期间从临近的河流中取水使用,水中的镁浓度取地表水监测值的平均值 3.55mg/L,注液期的新水用量为 373.33m³/d,淋洗期的新水量为 184.5m³/d,核算水中的镁为 0.26t。

镁的去处主要有:

(1) 稀土富集物

对于 300t/aREO 富集站产生的稀土富集物量为 1500t, 富集物中的镁含量为 139g/kg, 核算稀土富集物中的镁量为 208.5t。

(2) 浸矿渗漏

生产浸矿过程的渗漏量为 369m³/d,浸矿收液按 5 个月核算,渗漏的镁浓度同母液中镁浓度(取平均值)为 608.275mg/L,核算浸矿渗漏的镁为 33.67t,主要去向包括地表水、地下水和矿体下盘残留。

(3) 淋洗渗漏

清水淋洗过程的渗漏量为 184.5m³/d, 清水淋洗按 3 个月核算, 渗漏尾水中的镁浓度为 232.55mg/L, 核算淋洗渗漏的镁为 3.86t, 主要去向包括地表水、地

下水和矿体下盘残留。

(4) 淋洗尾水接续利用

清水淋洗周期按 3 个月核算,淋洗用水量 2460t/d,收回尾水量 2275.5t/d,淋洗后产生的尾水中含硫酸根和镁,为减少浸矿剂用量,用作下个矿块的配液,尾水中镁浓度为 232.55mg/L,核算淋洗尾水接续利用到下个矿块的镁为47.63t。

(5) 矿体存留

采场矿体和土壤在浸矿过程中吸附了绝大多数镁,部分镁在矿体内与稀土 离子发生交换,通过物理和化学作用参与成矿成岩构造,部分以游离态吸附存 留在土壤中,根据物料平衡核算,矿体内存留的镁量为862.80t。

镁平衡见表 4.29。

	投入 (t/a)		产	出 (t/a)	
物质	质量	折合镁	物质	质量	折合镁
七水硫酸镁	4809	961.80	稀土富集物	1500	208.50
氧化镁	324	194.40	浸矿渗漏	55350	33.67
新水	72604.5	0.26	淋洗渗漏	16605	3.86
			淋洗尾水回用	204795	47.63
			矿体及土壤吸附		862.80
合计		1156.46			1156.46

表 4.29 镁平衡表

4.11 污染源分析

4.11.1 施工期主要污染源及污染物

施工期工程主要是富集站的基建和首采矿块的原地浸矿采场的工程量,以形成采矿条件。

4.11.1.1 大气污染

施工期的大气污染源主要为"三材"运输卸载产生的扬尘、临时物料堆场在 大风气象条件下形成的风蚀扬尘、混凝土搅拌站产生的水泥粉尘、临时生活炉 灶排放的烟气等,风蚀扬尘产生量与风力、含水率等因素有关,难以定量。施 工期废气主要污染物为颗粒物。

4.11.1.2 水污染

施工期水污染源主要为施工设备冲洗废水和施工人员产生的生活污水。冲

洗废水主要污染物为 SS; 生活污水主要污染物为 SS、COD、BOD 等。由于原地浸矿采场施工比较简单,用到的大型机械不多,施工时人员不多,并且不会在施工场地驻扎,因此产生的冲洗废水和生活污水量很小。采取的主要措施为设置化粪池,防止废水随意外排。

4.11.1.3 噪声

施工期噪声源主要为各类施工机械。根据类比调查可知,巷道工程、富集 站和运输道路的施工机械主要是推土机、挖掘机、水泵、搅拌机、电锯等施工 设备。其噪声级类比调查结果见表 **4.30**。

产噪设备	声级/距离[dB(A)/m]	产噪设备	声级/距离[dB(A)/m]
挖掘机	91/5	水泵	88/5
推土机	88/5	混凝土搅拌机	87/5
拌和机	87/5	电锯	95/5
装载机	89/5	摊铺机	84/5

表 4.30 主要施工设备噪声源强

4.11.1.4 表土与固体废物

本项目基建土石方工程量主要是富集站产生的表土和原地浸矿首采矿块注液系统和集液巷道、清污分流系统等采场工程形成的弃土以及生产工人产生的生活垃圾。由于原地浸矿采场的特殊开采方式,施工期注液孔弃土产生量为0.54万 m³,单个注液孔产生弃土量约为0.05m³,在注液孔附近就近装袋堆存,以便以后回填。采场工程弃土量0.3万 m³,堆存到临时弃土场,最终75%的弃土回填巷道,剩余的0.075万 m³堆存,及时采取生态恢复措施。富集站表土剥离量共约2.18万 m³,堆存至附近的表土堆存场,最终用于复垦。

施工期按每个富集站施工人员 20 人,人均产生生活垃圾 0.75kg/d,施工期约 6 个月,生活垃圾产生量约为 10.8t,集中收集后定期运至当地环卫部门指定场所统一处理。

各矿山固体废物产生量见表 4.31 施工期固体废物产生量一览表

			富集站	产生量				
区县	矿区	规模	个数	表土	注液孔弃土	采场工程	生活垃圾	
			, ,,,	(万 m³)	(万 m³)	弃土 (万 m³)	(t)	
公 志日	长城稀土矿	*	2	0.90	0.14	0.08	5.4	
全南县	玉坑稀土矿	*	2	1.28	0.40	0.22	5.4	
合计			2.18	0.54	0.3	10.8		

表 4.31 施工期固体废物产生量一览表

4.11.1.5 生态环境

本项目工程建设主要包括高位池、注液孔、临时弃土场、集液巷道、导流 孔、母液收集池、富集站和母液管线、表土堆场等。施工期生态环境影响主要 是: 富集站、高位池、母液收集池及其它辅助设施的建设将使被占用土地利用 类型发生改变,由林地变为工矿用地。工程建设会导致局部地貌形态发生改 变,地表植被的铲除或压占将会改变局部区域内的生态景观类型与格局;同时 局部地表土壤产生扰动,短期内会造成水土流失,水土流失类型以水蚀为主, 尤其在暴雨情况下,水力侵蚀更为严重。

4.11.2 运营期主要污染源及污染物

原地浸矿工艺主要污染源发生点位见图 418。

4.11.2.1 大气污染源及防治措施

生产期的大气环境污染源主要是原地浸矿采场进行注液孔、收液系统等工程建设时产生的无组织排放扬尘、松散物料装卸产生的扬尘和物料运输产生的粉尘。松散物料运输采用密闭车辆运输;松散物料的装卸进行洒水,使物料保持一定的湿度;松散物料露天临时堆放表面进行遮盖。

类比同类型矿山的经验,松散物料装卸扬尘源强与松散物料的湿度、粒度等有关,一般在 300~900mg/s,一般采取洒水抑尘措施,抑尘效果可达 75%,抑尘后源强为 75~225mg/s。

4.11.2.2 水环境污染源及防治措施

- (1) 生产期
- 1) 富集站生产废水

矿山在正常情况下,母液处理环节产生的沉淀池上清液、压滤车间压滤废 水等全部回收利用,正常情况下矿山生产废水不外排。

2) 富集站生活污水

矿山生产人员较少,不设生活区,仅在倒班宿舍有少量生活污水,在倒班 宿舍设置化粪池,生活污水用作农肥和绿化用水,不外排。

3) 生产期原地浸矿采场母液渗漏

原地浸矿过程中无法保证全部回收母液,不可避免会有极少部分母液渗漏,母液渗漏下渗进入地下水,采区地下水和地表水联系紧密,部分地下水通

过径流间接汇至采区下游地表水,因此,生产期间原地浸矿采场主要的水污染源为母液的渗漏。

正常生产过程在确保采场收液系统和环保回收井(水力截获)运行良好情况下,渗漏率可以控制在7.5%。

本次评价采取了各矿区的原矿样品,在实验室内模拟了原地浸矿过程,并 对浸矿母液进行了成分分析,见表 4.32。

表 4.32 各矿区试验母液分析结果

矿区	рН	氨氮	硝态氮	亚硝态氮	硫酸盐	Mg	溶解性总固体
长城	4.6	ND	0.147	ND	8084	994	1689
玉坑	4.5	ND	0.163	ND	6306	896	3046

赣州稀土矿业有限公司在龙南足洞矿区和定南岭北矿区各进行了一个原地 浸矿采场无铵工艺试验,龙南足洞矿区选择了足洞试验矿,定南岭北矿区选择 了上下营木子山作为试验矿块,并于 2020 年 8 月 17 号取得试验效果评估专家 组论证意见:无铵新工艺试验工艺可行、技术经济合理、环保措施有效、环境 影响可接受,可以为新工艺的工业化应用和推广提供支撑和指导。

本次评价生产期渗漏母液污染源强与同为全覆式矿山的定南岭北矿区无铵工艺试验的成果相比,特征污染物硫酸盐及镁浓度基本一致,本项目与该试验采矿工艺一致,矿体赋存形态及成矿机理一致,现场试验数据更有代表性,因此,本项目生产期原地浸矿采场渗漏母液源强采用定南岭北矿区无铵工艺试验的成果数据,见表 4.33、表 4.34。

->- F	# #d 2- 0 - 1 to t#		
序号	典型富集站规模 t/a(REO)	母液渗漏量 t/d	每年渗漏量 t/a
1	**	11.1	1665
2	**	28.95	4343
3	**	61.5	9225
4	**	92.25	13838
5	**	123	18450
6	**	153.75	23063
7	**	184.5	27675
8	**	307.5	46125

表 4.33 典型富集站母液渗漏量

表 4.34 生产期原地浸矿采场渗漏母液源强

污染因子	рН	氨氮	硫酸盐	Mg
污染物浓度(mg/L)	4.09	3.45	8150	984

(2) 清水清洗期

1) 富集站

清洗期间富集站将淋洗产生的尾水(含硫酸根和镁)收集后,少部分直接用于第二批次采场浸矿补充水,最大程度的利用尾水中的硫酸镁等资源,减少浸矿剂的消耗量。

大部分尾水经处理后(钙矾石法去除硫酸根和镁)循环利用于原采场清水清洗工序。淋洗的尾水硫酸根满足江西省《离子型稀土矿山开采水污染物排放标准》(DB36 1016-2018)要求时不再淋洗。无可利用矿块时,最后一批次尾水可以用作临近富集站配液用水,不外排。

清洗期间富集站的员工较少,仅在办公生活区有产生少量生活污水,定期 对化粪池进行清掏后用作农肥,清洗期间生活污水不外排。

2)清洗期间采场渗漏尾水

清洗期间的淋洗水量同注液量,采场渗漏尾水量同生产期渗漏母液量,在确保采场收液系统和环保回收井(水力截获)运行良好情况下,渗漏率可以控制在7.5%。

顶水结束后采取清水清洗,解析出来的尾水中硫酸盐和镁浓度逐步降低, 直到淋洗的尾水硫酸根满足江西省《离子型稀土矿山开采水污染物排放标准》 (DB36 1016-2018)要求时,即硫酸盐 800mg/L 时不再淋洗。

清水清洗期污染物源强类比《赣州稀土矿业有限公司稀土矿山整合(一期)技改项目环境影响报告书》,见**表 4.35**。

 污染因子
 pH
 硫酸盐
 Mg

 污染物浓度(mg/L)
 4.77
 1273
 232.55

表 4.35 清洗期原地浸矿采场渗漏母液源强

3) 钙矾石法处理尾水

淋洗尾水采用工艺成熟的钙矾石法进行处理,类比赣州稀土矿业有限公司实际情况,钙矾石法去除效率在 30%-70%,通过该方法可以有效去除尾水中的大部分硫酸根,处理的尾水硫酸根小于 800mg/L 后可以循环用于淋洗。

进出水指标: 硫酸根>800mg/L; 排水标准: 江西省《离子型稀土矿山开采水污染物排放标准》一级标准值。投加原料为石灰和铝盐(偏铝酸钠)。

钙矾石法反应原理。先用氢氧化钙将 pH 值调整值 10, 然后添加偏铝酸钠 pH 值约为 11, 最终达到处置效果,处置过程采用搅拌和鼓风等措施加速反应。钙矾石处理效果的影响因素主要有 pH 值和摩尔比(n(Al³+): n(SO₄²-)), 根据试验结果,主要控制参数如下: pH=11; 温度为常温; 反应时间: 60min。尾水处理过程发生的化学反应如下:

$$H^++OH^-\rightarrow H_2O$$

 $Mg^{2^+}+2OH^-\rightarrow Mg(OH)_2\downarrow$
 $SO_4^{2^-}+Ca^{2^+}\rightarrow CaSO_4\downarrow$
 $Mn^{2^+}+2OH^-\rightarrow Mn(OH)_2\downarrow$
 $2F^-+Ca^{2^+}\rightarrow CaF_2\downarrow$

Al₂(SO₄)₃+6Ca(OH)₂+3H₂O→3CaO·Al₂O₃·3CaSO₄·3H₂O+6 H₂O 钙矾石法处理尾水工艺流程见图 4 19。

(3) 闭矿期

1) 富集站

一个富集站对应多个采区,当一个采区浸采结束后进行闭矿处理,富集站继续为下一个采区注液和收液,直到对应的采区全部开采完后进行富集站的闭矿处理,拆除并复绿,闭矿后富集站无生产废水和生活污水排放。

2) 闭矿后采区自然降雨渗漏尾水

在淋洗结束后进行采场的封孔闭矿,关闭注液系统,并持续跟踪收液系统 尾水污染物达到江西省《离子型稀土矿山开采水污染物排放标准》(DB36 1016-2018)后,封堵采区收液系统,彻底闭矿。一般在无自然降雨情况下,采区无 尾水渗漏产生;当有自然降雨时,降雨入渗到已闭矿的采空区,大部分雨水通 过采区植被和地表径流排至就近溪流中,少部分降雨入渗到采区矿体中,并有 极少渗漏到地下水,进而汇至地表水。

① 闭矿后自然降雨渗漏尾水量核算

闭矿后的采场面积取 A, 采场的降雨入渗系数取 k=0.15。根据赣州市各县 气象站多年统计资料,每年渗漏的尾水量核算公式如下:

$O=A \cdot k \cdot Y$

闭矿期污染物源强类比《赣州稀土矿业有限公司稀土矿山整合(一期)技改项目环境影响报告书》,见表 4.36。

		降雨量		污染物浓度			
区县	年最大降 雨量	年最小降 雨量	多年评价 降雨量	На	硫酸盐	Mg	
	(mm)	(mm)	(mm)	1	7,672 III.	5	
全南县	2049.5	1163.3	1664.9	4.8	414	81.8	

表 4.36 闭矿期原地浸矿采场渗漏废水源强

(4) 水污染防治措施

1) 排水系统

按照"雨污分流、清污分流、分质处理、一水多用"的原则建设了给排水系统:①富集站内设置导排水沟,设置溢流口,确保富集站内的雨污分流;②采场设置了内部避水沟和外排排水沟,将雨水和母液分开;③富集站上清液和压滤液均收集后回用到配液工序,无外排,正常生产运行过程中无废水集中排放。④富集站清水清洗期的淋洗尾水处理,采用工艺成熟,简单有效的钙矾石

沉淀法处理,处理达标后回用于清水清洗工序,无外排。

2) 防渗工程

对原地浸矿采场的集液沟和集液巷道采取防渗措施,并对富集站的池体全部采用防渗材料进行防渗处理。

3) 原地浸矿采场环保回收措施

在矿块下游,沿地下水流向垂直方向布置环保回收井,井深见基岩为准, 一旦发现有母液渗下,将渗漏母液回抽到富集站处理。

4) 清水清洗措施

在母液收集和处理结束后进行清水清洗,将矿体中存留的镁、硫酸根等淋洗出来,清洗措施和加注顶水的工程措施类似,清洗采用清水进行加注,不添加任何浸矿剂,配液池中的清水利用泵打到采区的高位池,利用注液系统进行淋洗,同时利用收液系统进行淋洗尾水的收集和处理,清洗尾水主要污染物同母液,一般为硫酸盐、镁,收集后部分回用到下个矿块的配液中,绝大部分淋洗尾水进行处理,处理措施采用钙矾石工艺,经处理后的尾水回用作为下一次淋洗用水;尾水中的特征污染物达到《离子型稀土矿山开采水污染物排放标准》(DB36 1016-2018)后不再淋洗。

6) 闭矿后水污染防治措施

闭矿后要将注液孔周边的岩土回填,封堵闭孔,并进行生态恢复,但保留集液沟和导流孔等收液系统,保留避水沟等雨污分流系统。当采场在自然降雨情况下产生的淋洗尾水稳定达到《离子型稀土矿山开采水污染物排放标准》(DB36 1016-2018)后关闭收液系统,并进行复绿。

7) 地下水污染防治措施

按照"源头削减控制、分区防渗防治、污染监控预警、应急响应处置"原则对场地内地下水污染进行防控。清污分流及各管道设备的要求,属于"源头削减控制";集液巷道、导流孔等所有巷道底板均进行防渗漏处理,采用底部水泥硬化防渗措施。原地浸矿采场高位池、集液沟、母液收集池,富集站母液中转池、富集池、配液池、产品池、尾水处理池、事故应急池、污泥间、硫酸储罐等构筑物采用满足重点防渗区要求的防渗膜防渗(等效黏土防渗层厚度≥6m,K<1.0×10-7cm/s 或参照 GB18598 执行),属于"分区防渗防治";制定地下水环

境跟踪监测计划,及时发现母液泄漏问题并采取措施,属于"污染监控预警"; 制定地下水污染应急响应以及专门的地下水污染事故的应急措施,属于"应急响 应处置"。

8) 末端风险防控

对于地下水污染的末端风险防控,采用水力截获+抽出处理措施,在小流域出口设置截获井,如有超标采取抽提和处理。

4.11.2.3 表土与固体废物

(1) 表土

在运营期,车间表土剥离量共为 1.28 万 m³ 堆存至附近的表土堆存场,最终表土作为复垦用土。

(2) 注液孔废弃土石方堆放

单个注液孔施工产生废弃土石方量较少,约 0.05m³,就近装袋堆存在注液 孔周边,待浸矿完毕后,回填注液孔,生产期共产生注液孔弃土 2.58 万 m³。

(3) 收液系统废弃土石方堆放

根据设计要求集液巷道的巷道断面规格为(0.8m+1.2m)×1.85m, 长度根据矿体的延伸而定。按照 100m 的集液巷道进行估算,集液巷道出土量约为 185m³,出土后按照最终松散系数进行考虑约为 1.05,则临时堆存量约为 194m³,集液巷道回填时采用人工进行回填,集液巷道回填时无法完全充满整个巷道,顶部约会留出 15~30cm 的孔隙,则回填量约为 100× (0.8+1.2)×1.55×0.5=155m³,回填率约为 79.9%,按照 75%设计。

根据设计,在整个生产期,集液巷道、收液导流沟产生废弃土石方量约为 $1.46~ {\rm T}~ {\rm m}^3$,用于回填到采场采空区约 $1.095~ {\rm T}~ {\rm m}^3$,堆存于临时弃土场的约 $0.365~ {\rm T}~ {\rm m}^3$ 。

临时弃土场按"运输距离较短、风险最小、恢复最快、相对集中"的原则进 行堆存。

由此可见,每年产生的弃土量由于每年开采的原地浸矿采场不同,堆存量很小,而且各原地浸矿采场的位置均不一样,因此临时弃土场位置根据运输距离较短、风险最小、恢复最快、相对集中的原则布置。

①南方雨水较多,如果所有废弃土石方集中堆置,堆存高度较高,在暴雨

天气发生滑坡和泥石流的风险较大。临时弃土场高度不高,坡度不大(一般在30°以下),可以有效的降低地质灾害的潜在危险,排水系统容易控制。

- ②从生态破坏来讲,采用集中堆存的方法则需要修路,修路造成的破坏远远大于临时弃土场本身的破坏。如临时弃土场集中堆存,运输道路需环山修建,不能为当地居民利用,在矿山服务期满后,只能废弃。本着不修公路,采用人工堆存,最大程度保护当地生态环境,集液巷道弃土原则就近临时堆存在原地浸矿采场附近的凹地。
- ③如果废弃土石方采用集中堆存设计,对于土地复垦而言,临时弃土场的 大部分复垦工作必须等待临时弃土场全部完工才可进行,而采用就近分散设置 临时弃土场,临时弃土场堆存的为集液巷道弃土,量较小,在集液巷道施工结 束后即可进行复垦。可以实现边破坏边复垦。

因此本项目中的临时弃土场采用运输距离较短、风险最小、恢复最快、相对集中的原则,因地制宜进行合理设计,可减少对当地生态环境的不利影响。 临时弃土场设在原地浸矿采场附近的凹地。

(4) 污泥

清水清洗期,淋洗尾水需要在富集站自行处理后循环淋洗,采用钙矾石法,会产生污泥,产生量如表 4.37 所示。本项目清水清洗期,共产生污泥量约为 11.88t/a。

类比赣州稀土无铵工艺试验数据,见表 4.38,污泥浸出液中监测因子浓度均低于《危险废物鉴别标准 浸出毒性鉴别》(GB5085.3-2007)表 1 浸出毒性鉴别标准限值,不具有危险废物浸出毒性特征。根据中科检测技术服务(广州)股份有限公司出具的《固体废物危险特性鉴别报告》,无铵工艺产生的污泥不具有急性毒性等危险特性,属于一般工业固体废物,2021年 10 月 14 日,专家组出具了《赣州稀土矿业有限公司定南县离子型稀土无铵工艺试验项目淋洗尾水污泥危险特性鉴别报告》专家组意见,同意中科检测技术服务(广州)股份有限公司出具的《固体废物危险特性鉴别报告》的相关结论,因此,污泥暂定按

照一般固体废物管理,定期综合利用,妥善处置。建设单位应设置符合规范的 污泥暂存库房,做好防渗处理。

序号 典型富集站规模 t/a (REO) 污泥产生量 t/d 1 0.18 2 *** 0.47 3 *** 1 4 *** 1.5 5 2 6 *** 2.5

表 4.37 不同规模富集站污泥产生量

表 138	污泥浸出毒性试验结果	Ĺ
AX 4.30	1 7 1/1/17 1 1 1 ±± 1 ± 100,707 ≤= 7k	•

3

5

编号	1#	2#	3#	4#	5#	限值
铜(以总铜计)	0.0086	0.0041	0.0063	0.0067	0.0107	100
锌(以总锌计)	0.0019	0.0018	0.0021	0.0019	ND	100
镉(以总镉计)	ND	ND	ND	ND	ND	1
铅(以总铅计)	0.0052	0.0097	0.007	0.0034	0.0442	5
总铬	0.0164	0.0168	0.0155	0.0125	0.0175	15
铬 (六价)	ND	ND	ND	ND	ND	5
烷基汞	ND	ND	ND	ND	ND	10ng/L
汞 (以总汞计)	ND	ND	ND	ND	ND	0.1
铍(以总铍计)	ND	ND	ND	ND	ND	0.02
钡(以总钡计)	0.121	0.0919	0.124	0.082	0.117	100
镍(以总镍计)	0.0921	0.0997	0.101	0.0992	0.0352	5
总银	ND	ND	ND	ND	ND	5
砷(以总砷计)	ND	ND	ND	ND	0.0046	5
硒 (以总硒计)	ND	ND	ND	ND	ND	1
无机氟化物	0.895	0.924	0.872	0.807	0.842	100
氰化物(以 CN-计)	ND	ND	ND	ND	ND	5

(5) 生活垃圾

7

8

本项目生活垃圾集中收集后定期运至当地环卫部门指定场所统一处理,本次劳动定员 48 人,按每人每天 0.75kg 生活垃圾产生系数核算,每年产生生活垃圾 11.88t/a。集中收集后定期运至当地环卫部门指定场所统一处理。

本项目各矿区固体废物产生量见表 4.39。

表 4.39 各矿区运营期固体废物产生量一览表

			富集站			运营期		
区县	矿区	规模	个数	表土	注液孔弃土	采场工程弃土	污泥	生活垃圾
			1 3	(万 m³)	(万 m³)	(万 m³)	(t/a)	(t/a)
全南县	长城稀土矿	***	2	0.00	0.46	0.26	990	5.94
王肖云	玉坑稀土矿	***	2	1.28	2.12	1.20	1980	5.94

合计	1.28	2.58	1.46	2970	11.88

4.11.2.4 噪声污染源及防治措施

原地浸矿采场高位池和浸矿管线主要通过自流注液,母液收集池通过自流 汇集至富集站,采场无明显噪声源。富集站噪声源主要是压滤设备、空压机和 水泵产生的噪声,富集站的主要噪声源及源强见表 4.40。

序 号	名称		声源强度 dB(A)	防治措施	控制后强 度 dB(A)
1		国集站 空压机		置于车间内、设备加减振装置	70~75
2	富集站			置于室内、设备加减振装置、 墙体隔声	75~80
3		水泵	85~95	置于池中	65~75

表 4.40 噪声源及源强

4.11.2.5 生态环境影响及恢复措施

(1) 生态环境影响

①原地浸矿采场的生态破坏

本项目在原地浸矿采场中会对进行注液孔、集液巷道、截水沟、排水沟、 集液沟、高位池、中转池等工程的建设,在建设过程中将会对地表进行占地破 坏,对植被也会造成破坏,但是对绝大部分面积的原地浸矿采场来讲,其植被 还是能够得到保护。

注液孔挖掘岩土装袋堆放在注液孔周边,待浸矿完成后再回填注液孔,及 时复垦,因此对地形地貌影响较小。

②临时弃土场

在整个生产期,集液巷道、收液导流沟产生弃土量约为 1.46 万 m³,用于回填到采场采空区约 1.095 万 m³,堆存于临时弃土场的约 0.265 万 m³。临时弃土场按"运输距离较短、风险最小、恢复最快、相对集中"的原则进行堆存。临时弃土场与原地浸矿采场的建设时间是相关的,是逐步建设完成的,其建设也会导致植被破坏等影响。

③富集站

富集站的建设会造成占地破坏和土地利用类型的变化,对植被也会全部破坏。

④表土堆存场

本项目富集站建设前进行表土剥离,剥离厚度约为 0.5m 左右,将剥离的表

土存放至表土堆存场,最终表土用于富集站的复垦工作。表土堆存场的建设也 会导致地表植被的破坏,但是表土堆存场选址主要在废弃地、未利用地和植被 很少的地块上,减少生态影响。

(2) 生态恢复措施

原地浸矿采场浸矿完毕后注液孔周边装袋岩土及时回填注液孔,及时复垦恢复植被;将挖掘集液巷道产生的弃土,大部分回填到集液巷道,减少弃土占地面积,设置挡土墙,防治水土流失,弃土场及时复垦。表土堆存场表土用完后,及时复垦。

4.11.3 服务期满后环境影响及防治措施

4.11.3.1 生态环境影响及恢复措施

(1) 生态环境影响

各原地浸矿采场生产周期较短(不到1年),浸矿结束后,立即采取生态恢复措施,服务期满后各原地浸矿采场对周围生态环境的影响将不再持续,而是在业已形成的扰动与破坏基础上逐步走向生态环境的还原过程,不新增对生态环境的影响。

(2) 生态环境保护措施

闭矿阶段采取的生态恢复措施:最后一年采矿的原地浸矿采场进行复垦, 注液孔周边装袋岩土及时回填注液孔,及时栽植植被。富集站和表土场及时进 行复垦。

4.11.3.2 水环境污染及防治措施

(1) 原地浸矿采场水环境污染源

清水清洗后,将原地浸矿采场的注液孔进行封闭,并进行生态恢复,服务期满后可能的水环境污染源主要为原地浸矿采场由于自然降雨产生的废水,由于已经进行了清水清洗和注液孔封孔,自然降雨只有少量的水进入矿体,正常情况下不会再有污染物超标。

对清洗废水水质和原地浸矿采场下游的监测井进行周期性监测,尤其是闭矿后第 1 年监测频率要多。原地浸矿采场生产期完成后,其清污分流、收液系统均不拆除,仍然发挥其作用,正常情况下清洗废水不会出现超标,在监测出现超标时,将清洗废水收集后回到富集站进行利用或者进行水处理。

(2) 富集站服务期满后的废水

富集站对应的最后一个采区淋洗完后,处理后的淋洗尾水由于没有采场需要浸矿使用,这部分水可以接续利用给临近富集站,不外排。

5 环境概况

5.1 矿区地理位置

整合后全南县涉及矿山 2 处, 分别为长城稀土矿及玉坑稀土矿。

(1) 长城稀土矿

全南县长城稀土矿位于全南县城 4°方位, 直距约 28km 处。地理坐标东经: ***~***, 北纬: ***~****, 行政区划属全南县陂头镇。

(2) 玉坑稀土矿

全南县玉坑稀土矿位于江西省全南县县城北东 338°方位,相距 1km 处。矿区中心地理坐标为: 东经***, 北纬***, 行政区划隶属于全南县城厢镇和金龙镇。

5.2 自然环境概况

(1) 地形地貌

全南县地貌以山地为主,平均海拔 360 米。地势西南高、东北低,中部隆起,把县境分成南北两片。

(2) 气象特征

全南县属亚热带湿润季风气候区,大部分地区多年平均气温在 16~19℃之间,各地气温随海拔高度的增高而降低,县内以黄田江下游地区为最高;中部的小叶岽及西部边缘山区为最低。年平均气温为 18.5℃。

全南县属中亚热带多雨区,雨量充沛,但降水时空分布不均匀,易发生旱涝现象。年平均降水量 1709.5mm。由于受季风气候影响,一年中不同时期降水相差悬殊。全南县 3~8 月平均月雨量在 150mm 以上,为多雨季节;10 月至次年 1 月平均月雨量在 10mm 以下,为干旱季节;4~6 月雨量平均为 648.2mm,雨量占全年 39.2%,为汛期;10~12 月雨量平均仅为 109.8mm,为秋冬干旱期。平均降水量最大月份为 6 月,平均月降水量为 253.3mm;平均降水量最少的月份是 11 月,平均月降水量仅为 28.1mm;全南县霜期短,无霜期长。

(3) 土壤

全南土壤类型有紫色土、石灰土、红壤、山地黄壤、山地草甸土 5 个土类, 依垂直高度不同有所区别。山麓、山谷、山间盆地以红壤为主, 土层深

厚,质地多粘性,淋溶作用强烈,多为块状结构,表层有机质含量为 3%左右,呈酸性,pH 值多为 5.5-6.5。山地黄壤分布在海拔 300-700 米地带,土层较厚,质地多粘,多为块状结构,呈酸性,pH 值多为 5.5-6.5。成土母岩多样及复杂,公园境内成土母质有花岗岩类风化物、玄武岩类风化物、石英岩类风化物、碳酸盐岩类风化物、第四纪红色粘土类及河流沉积物类等残积物、坡积物,土层深度多在 100 厘米以上,地表枯枝落叶层 5 厘米左右,以下为暗灰色的腐殖质层,有机质含量较为丰富。

(4) 水文概况

区内水系发育,呈树枝状展布,主要分布有两大支流;由西南向北东平行 贯穿全区,南迳河与上山河在县城汇合流入桃江,黄田江流经陂头、社迳汇入 桃江。

(5) 矿产资源

全南地处南岭东西复杂构造带与赣南于同校报华系构造带及山字型构造东的复合部位,岩浆岩活动频繁,地质构造复杂,形成了以有色金色矿产为主的丰富矿产资源,已经发现的矿种主要有钨、锡、铍、铜、铅、锌、锰、钼、铋、金我,银、钴、锆铪、稀土、石灰石、石英砂、煤、萤石和瓷土等 20 多种,其中尤以钨、锡、铀、稀土、萤石、瓷土、石英砂储量较为丰富。现已开采的主要有钨、煤、稀土、萤石、石灰石、瓷土等。

5.3 区域污染源

全南县矿区周边分布有工业企业等,详细见表 5.1。

序号	矿区 名称	方位		名称	主要污染物类别	废水 排放 去向
1	玉坑 稀土 矿	矿内东 角	全南晶鑫 环保材料 有限公司	主要生产氧氯化锆、年产量为15000t,5水偏硅酸钠、减水剂共25000t、二氧化锆10000t。年产氧化钪5t,年产氧化铪10t,还磷酸锆、部分稀土产品等。	COD、氨氮、其他特征污染物(pH、悬浮物、总磷、石油类、氟化物、硫化物、总氮、BOD5,动植物油)	间排至南工污处厂接放全县业水理厂
2			全南晶环 科技有限 责任公司	氧氯化锆生产能力1万吨/ 年	COD、氨氮、其他特征污染物(悬浮物、 石油类、pH、总镉、	间接 排放 至全

表 5.1 全南县区域污染源清单一览表

					总铅、六价铬、总 铬、总砷、总氮、总 磷、动植物油、 BOD₅、总锌、氟化 物)	南县 工业 污水 处理 厂
	矿区	岩松	普科(南有公瑞技全)限司	铁基轻骨料、膨化骨料等建筑材料的研发、生产及销售	无废水排放	
3	范围 外, 西侧	工业园	松冶材(南有公岩金料全)限司	金属和非金属氟盐生产、销售;研究、开发各类新型的金属及非金属类氟盐;	COD、氨氮、其他特征污染物(pH、悬浮物、总氮、总磷、石油类、氟化物、总铁、BOD5、动植物油)	小慕河

6 区域环境质量现状

6.1 环境空气质量现状

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018),项目所在区域达标判定优先采用国家或地方生态环境主管部门公开发布的评价基准年环境质量公告或环境质量报告中的数据或结论。环境空气质量达标情况评价指标为SO₂、NO₂、PM₁₀、PM_{2.5}、CO 和 O₃,六项污染物全部达标即为城市环境空气质量达标。

本次评价引用江西省生态环境厅发布的《2020 年江西省各县(市、区)六项污染物浓度年均值》中各县的数据对本项目区域达标性判定,具体数据见表 6.1。

污染物	年评价指标	现状浓度	标准值	占标率	达标
行朱初	十 广川 1月170	$(\mu g/m^3)$	$(\mu g/m^3)$	(%)	情况
SO_2	年平均质量浓度	11	60	18.33	达标
NO_2	年平均质量浓度	9	40	22.50	达标
PM_{10}	年平均质量浓度	32	70	45.71	达标
PM _{2.5}	年平均质量浓度	16	35	45.71	达标
CO	第95百分位数日平均质量浓度	1400	4000	35.00	达标
O_3	第90百分位数8h平均质量浓度	123	160	76.88	达标

表 6.1 全南县区域空气质量现状评价表

由表 **6.1** 可知, 赣州市全南县 2020 年环境空气质量六项污染物指标均符合《环境空气质量标准》(GB3095-2012)中二级标准,均为达标区。

6.2 地表水环境质量现状

6.2.1 地表水环境质量现状监测

6.2.1.1 监测断面

本次地表水环境质量现状监测针对各流域的子流域布设监测断面,用于控制子流域出口浓度,在主河流流入流出矿区布设控制断面等,共布设 11 个地表水监测断面。全南县稀土矿区地表水监测断面见表 6.2。

表 6.2 本项目各矿区地表水监测断面布设一览表

监测断面编号	矿区	流域	位置	河流	断面属性
1			玉坑西侧井水河支流	井水河支 流	对照断 面
2	桃江支流井水河		玉坑西侧溪流汇入井水口上游 500m	井水河	控制断面
3			井水河与小慕河交汇口下游 500m		控制断面
4	玉坑		玉坑东北侧下游上辽河	上辽河	控制断面
5		桃江支流上辽河	玉坑东南侧下游溪流汇入上辽河 下游 500m	上辽河	控制断面
6		桃江	玉坑南侧小幕河桃江汇入口下游 500m	桃江	控制断面
7		桃江	玉坑北侧上辽河桃江汇入口下游 500m	桃江	控制断面
8		桃江支流黄田江支流	长城北侧龙迳河矿区上游 500m	龙迳河	对照断 面
9	长	龙迳河	长城西北侧矿区下游龙迳河矿区 下游 500m	龙迳河	控制断面
1 0	城		长城矿区西侧矿区下游老屋溪	老屋溪	控制断面
1		桃江支流黄田江	长城东北侧龙迳河汇入黄田江下 游 500m	黄田江	控制断面

6.2.1.2 监测因子

监测项目: pH、高锰酸盐指数、COD、BOD5、氨氮、总磷、铜、锌、铅、砷、镉、铬(六价)、汞、氰化物、氟化物、氯化物、硝酸盐、硫酸盐、硫化物、石油类、粪大肠菌群、镁、钙、总硬度、溶解性总固体、全盐量。

6.2.1.3 监测时间与频次

监测时间与频次: 2021年11月枯水期监测一次,连续3天。

6.2.1.4 监测结果

全南县各稀土矿区地表水监测结果见表 6.3。

6.2.2 地表水环境质量现状评价

6.2.2.1 评价方法

采用单项标准指数法:

 $S_i = C_i / C_{0i}$

式中: Si—评价因子单项标准指数;

Ci—评价因子的实测浓度值,mg/L;

 C_{oi} —评价因子的环境质量标准值,mg/L。

pH的标准指数为:

pH \leq 7.0 时, $S_{pH}=(7.0-pH)/(7.0-pH_{sd})$ pH \geq 7.0 时, $S_{pH}=(pH-7.0)/(pH_{su}-7.0)$

式中: S_{pH} —pH 的标准指数;

pH—pH 值;

 pH_{sd} —评价标准下限;

pHsu—评价标准上限。

6.2.2.2 评价结果

各矿区地表水环境质量评价结果见表 6.4。

由表 6.4 可知,全南县各稀土矿区周边地表水除氨氮外,其余各监测因子均达到《地表水环境质量标准》(GB3838-2002)中III类水质要求。

氨氮超标情况详见表 6.5。

表 6.5 地表水氨氮超标情况表

	监测点	氨氮监测结果(mg/L)
2	玉坑西侧溪流汇入井水口上游 500m	3.59~3.63
8	长城北侧龙迳河矿区上游 500m	5.12~5.25
9	长城西北侧矿区下游龙迳河矿区下游 500m	6.50 ~6.90
10	长城矿区西侧矿区下游老屋溪	5.28~5.46

由表 6.5 可见:

全南 2 号点位于玉坑稀土矿西侧下游,超标倍数 2.59~2.63 倍,超标与玉坑稀土矿历史采矿活动有关; 8、9 号监测点位于长城稀土矿东侧下游,10 号监测点位于长城矿区西侧下游,超标倍数 4.12~5.90 倍,超标与长城稀土矿历史 采矿活动有关。

6.3 底泥环境质量现状

6.3.1 底泥环境质量现状监测

6.3.1.1 监测点位

同地表水监测断面,见表 6.2。

6.3.1.2 监测因子

pH、Ni、Cu、Zn、Cr、As、Cd、Pb、Hg 共 9 项。

6.3.1.3 监测时间与频次

监测时间与频次: 2021年11月监测一次。

6.3.1.4 监测结果

监测结果见表 6.6。

6.3.2 底泥环境质量现状评价

6.3.2.1 评价方法

采用单项标准指数法:

 $S_i = C_i / C_{0i}$

式中: Si—评价因子单项标准指数;

Ci—评价因子的实测值,mg/kg;

 C_{oi} —评价因子的标准值,mg/kg。

6.3.2.2 评价标准

采用《农用污泥污染物控制标准》(GB 4284-2018)中A级污泥产物的污染物浓度限值。

6.3.2.3 评价结果

评价结果见表 6.7。监测结果表明,全南县各矿区的底泥全部满足《农用污泥污染物控制标准》(GB 4284-2018)中A级污泥产物的污染物浓度限值要求。

6.4 声环境质量现状

6.4.1 监测布点

在矿区内选取有代表性的富集站进行声环境质量现状监测,在富集站一周 边布设了监测点,具体见表 6.18。

序号	县	矿区名称	富集站名称	点位	规模 t/a	
1				现有厂界东		
2		长城	 富集站一(现有)	现有厂界西	**	
3	全南县	1人以	日来 均一(処行)	现有厂界南	• •	
4				现有厂界北		
5		玉坑	富集站一	拟建位置中心点	**	

表 6.18 声环境监测点位

6.4.2 监测项目、频次

监测项目为等效连续 A 声级 Leq (A)。连续监测 2 天。分别进行昼间与夜间噪声监测。

6.4.3 监测结果

声环境监测结果见表 6.19。评价区昼夜噪声均满足《声环境质量标准》 (GB 3096-2008)中2类声环境功能区标准值要求。

6.5 土壤环境现状调查与评价

6.5.1.1 监测点位

按照《环境影响评价技术导则 土壤环境(试行)》(HJ964-2018)规定的布点原则,本次评价共布设土壤环境质量现状监测点 16 个,其中占地范围内 10 个,占地范围外 6 个,占地范围内柱状样 5 个、表层样 5 个,占地范围外全部为表层样,监测布点及监测因子见表 6.20。

表 6.20 土壤现状监测布点

序号	矿 区	编号	位置	占地范围内/ 外	表层/柱 状	采样深 度	监测因子
1		CC-S1	现有车间内部		柱状	0-0.5	建
2		CC-S2	首采矿块内部		柱状	0.5-1.5	设
3		CC-S3	采场废弃地内部	占地范围内	柱状	1.5-3.0	用
4		CC-S4	采场内表层	口地包围内	表层		地
5	长	CC-S5	占地范围内园地		表层	0-0.2	52
6	城	CC-S6	采场内表层林地		表层		项
7	790	CC-S7	首采矿块下游农田		表层		农
8		CC-S8	占地范围外西侧农田		表层		用
9		CC-S9	占地范围外北侧林地	占地范围外	表层	0-0.2	地 14 项
10		YK- S1	首采矿块内部		柱状	0-0.5 0.5-1.5	建
11		YK- S2	富集站三内部	 占地范围内	柱状	1.5-3.0	设 用
12		YK- S3	采场表层	디쟨(다데)	表层	0-0.2	地 52
13	玉坑	YK- S4	采场表层林地		表层	0-0.2	项
14		YK- S5	占地范围外南侧林地		表层		农田
15		YK- S6	占地范围外西侧农田	占地范围外	表层	0-0.2	用地
16		YK- S7	占地范围外东北侧农 田		表层		14 项

6.5.1.2 监测单位、项目和时间

(1) 监测单位和监测时间

江西省钨与稀土产品质量监督检验中心(江西省钨与稀土研究院)2021 年 11 月对矿区及周边的土壤进行了监测。

(2) 监测因子

农用地:参照《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB15618-2018)确定监测因子为: 镉、汞、砷、铅、铬、铜、镍、锌、六价铬、氨氮、硫酸盐、镁、pH、含盐量(SSC), 共 14 项。

(3) 采样深度

占地范围内: 柱状 0-0.5m、0.5-1.5m、1.5-3.0m, 表层 0-0.2m

占地范围外: 表层 0-0.2m

(4) 监测频次

评价期内监测一次。

6.5.1.3 监测和分析方法

土壤监测方法及检出限见表 6.21。

检测项目 方法检测标准 检出限 рΗ NY/T1121.2-2006 /(无量纲) GB/T22105.1-2008 0.002 mg/kgHg GB/T22105.2-2008 As 0.01 mg/kg0.5 mg/kgCu Pb 2 mg/kg Zn 7 mg/kg HJ803-2016 Cd 0.07 mg/kgCr 2 mg/kgNi 2 mg/kg Mg HJ780-2015 六价铬 HJ687-2014 2 mg/kg 硫酸盐 HJ635-2012 50 mg/kg

表 6.21 土壤检测方法及检出限

检测项目	方法检测标准	检出限
氨氮	НЈ634-2012	0.10 mg/kg
含盐量	LY/T1251-1999	/
氯甲烷		1.0 μg/kg
氯乙烯		1.0 μg/kg
1,1-二氯乙烯		1.0 μg/kg
二氯甲烷		1.5 μg/kg
反式-1,2-二氯乙烯		1.4 μg/kg
1,1-二氯乙烷		1.2 μg/kg
顺式-1,2-二氯乙烯		1.3 μg/kg
氯仿		1.1 μg/kg
1,1,1-三氯乙烷		1.3 μg/kg
1,2-二氯乙烷	НЈ605-2011	1.3 μg/kg
苯		1.9 μg/kg
四氯化碳		1.3 μg/kg
1,2-二氯丙烷		1.1 μg/kg
三氯乙烯		1.2 μg/kg
甲苯		1.3 μg/kg
1,1,2-三氯乙烷		1.2 μg/kg
四氯乙烯		1.4 μg/kg
氯苯		1.2 μg/kg
1,1,1,2-四氯乙烷		1.2 μg/kg
乙苯		1.2 μg/kg
间,对-二甲苯		1.2 μg/kg
苯乙烯		1.1 μg/kg
邻-二甲苯	111605 2011	1.2 μg/kg
1,1,2,2-四氯乙烷	НЈ605-2011	1.2 μg/kg
1,2,3-三氯丙烷		1.2 μg/kg
1,4-二氯苯		1.5 μg/kg
1,2-二氯苯		1.5 μg/kg
苯胺		0.1 μg/kg
2-氯酚		0.06 μg/kg
硝基苯		0.09 μg/kg
萘		0.09 μg/kg
苯并[a]蒽	H1024 2017	0.1 μg/kg
崫	НЈ834-2017	0.1 μg/kg
苯并[b]荧蒽		0.2 μg/kg
苯并[k]荧蒽		0.1 μg/kg
苯并[a]芘	苯并[a]芘	
茚并[1,2,3-cd]芘		0.1 μg/kg

检测项目	方法检测标准	检出限
二苯并[a,h] 蒽		0.1 μg/kg

6.5.1.4 监测结果

土壤理化特征监测结果见表 6.22 表 6.23, 土体构型监测结果见表 6.24。各监测点的监测结果见表 6.25~表 6.28

6.5.2 土壤环境质量现状评价

6.5.2.1 评价标准

划定矿区范围内,富集站、首采矿块内部和采场监测点依据《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)第二类用地筛选值对监测结果进行评价。

划定矿区范围内的农用地,依据《土壤环境质量标准-农用地土壤污染风险管控标准(试行)》(GB15618-2018)中风险筛选值对监测结果进行评价,林地因为目前标准中未有筛选值故未进行评价。

划定矿区范围外的监测点,依据《土壤环境质量标准-农用地土壤污染风险管控标准(试行)》(GB15618-2018)中风险筛选值对监测结果进行评价,划定矿区范围外的林地因为目前标准中未有筛选值,故未进行评价。

6.5.2.2 评价方法

采用单项标准指数法:

 $S_i = C_i / C_{0i}$

式中: Si—评价因子单项标准指数;

 C_i —评价因子的实测浓度值,mg/kg;

 C_{0i} —评价因子的筛选值,mg/kg。

6.5.2.3 土壤重金属评价结果

评价结果见表 6.29~表 6.33。依据监测结果和评价结果进行统计分析,分析结果见,由表可知,所有农用地点位均未超过《土壤环境质量标准 农用地土壤污染风险管控标准》(GB15618-2018)中风险筛选值,所有建设用地点位未超过《土壤环境质量 建设用地土壤污染风险管控标准》(GB36600-2018)第二类用地筛选值,土壤环境质量较好。

6.5.2.4 土壤酸化和盐化现状

对照《环境影响评价技术导则 土壤环境(试行)》(HJ 964-2018) 附录 D,

项目所在区域土壤盐化、酸化现状见表 6.34。

由表可知:

(1) 土壤酸化

项目区土壤主体为轻度酸化土壤,部分为无酸化或碱化土壤及中度酸化土壤,无轻度碱化土壤。

(2) 土壤盐化

项目区均为未盐化土壤;监测点位一共 26 个,范围为 0.0-0.3g/kg, SSC 均小于 1g/kg,均为未盐化土壤。

7 大气环境影响分析

7.1 主要气候统计资料

全南地处亚热带湿润季风气候区,县内气候四季分明,具有春早、夏长、秋迟、冬暖的特点。全县气候温和,县年均气温为 18.5℃,极端最高气温为 40.6℃ (1967年7月17日),极端最低气温为-7.9℃ (1975年12月15日)。全县属亚热带多雨区,雨量充沛,年平均降水量为1709.5mm。无明显全年主导风向,冬季盛行北风,其出现频率为8.4%,夏季盛行西南偏南风,其出现频率为6.4%。其基本气象条件见表7.1。

年平均日照时数	1554.3h	多年平均降雨量	1709.5mm
多年平均气温	18.5℃	多年平均蒸发量	1379.5mm
历年极端最高气温	39.2℃	多年平均相对湿度	83%
历年极端最低气温	-7.9°C	多年平均风速	1.97m/s
多年平均气压	984.9hPa	年主导风向	无明显主导风向

表 7.1 全南县近 20 年基本气象条件表

7.2 环境空气影响分析

本项目的大气污染主要由注液孔、临时弃土场等部位产生的扬尘。

- (1) 注液孔施工对环境空气的影响分析
- ①注液孔的开挖采用人工和小型机械操作,但不可避免会产生少量无组织 扬尘。由于当地土壤湿度较大,因此产生的无组织扬尘较少。
- ②注液孔挖掘出来的岩土装袋堆放在注液孔旁边,堆放期间由于自然风力作用也会产生一定量的扬尘。由于当地气候湿润多雨,堆放的岩土湿度较大,不会轻易产生扬尘;注液一般 1 年左右就完成,并注液孔回填复垦;原地浸矿采场采用分矿段、分区开采,同时作业的面积较小。岩土的湿度较大,堆放期短,堆放面积较小,因此产生的扬尘较少,不会对大气环境造成明显不利影响。
- ③在注液孔复垦时,由于表土的翻动,会产生少量扬尘,但是不会对大气 环境造成明显不利影响。

综上所述,注液孔开挖、岩土堆放,以及复垦产生的扬尘不会对周围空气 环境造成明显影响。

(2) 临时弃土场扬尘对环境空气的影响分析

临时弃土场扬尘主要是弃土时产生的扬尘和风蚀扬尘,均属于无组织排放。由于当地多雨湿润,而且临时弃土场面积较小,临时堆存时间约 1 年,因此临时弃土场产生的扬尘很小,其对周边空气环境不会造成明显不利影响。

(3) 其他无组织排放扬尘对环境空气的影响分析

其他无组织排放扬尘主要是松散物料装卸扬尘。类比矿山的经验,松散物料装卸扬尘源强与松散物料的湿度、粒度等有关,一般在 300mg/s~900mg/s,一般采取洒水抑尘措施,抑尘效果可达 75%,抑尘后源强为 75mg/s~225mg/s。通过保持一定的湿度、松散物料露天临时堆放表面进行遮盖等措施,不会对周围环境造成明显影响。

综上所述,项目在生产期中的无组织排放不会对周围环境空气造成明显不 利影响。

	•	仅 /.2 足!	久·沙口八(*	1、つむボンツコレー	л д д 2	•		
	工作内容			自	查项目			
评价	评价等级	_	一级□		二级口		=	:级┪
等级 与范 围	评价范围	边长	=50km□	边长	ć 5-50kı	n□	边长	=5km□
评价	SO ₂ +NO _x 排放量	≥20	000t/a□	500	0-2000t/a	a.	<5	00t/and
因子	评价因子		基本污染 其他污染				括二次 PM 包括二次 P	
评价 标准	评价标准	国家	尽标准┪	地方标		附	录 D□	其他 标准□
	环境功能区		类区□	二类区	₹ ₪	→	类区和二学	
	评价基准年			(2	2020)年	=		
现状 评价	环境空气质量 现状调查数据 来源	长期例	行监测数据	主管部门]发布的	数据₪	现状补	充监测□
	现状评价		达标区₪			不知	と标区□	
污染 源调 查	调查内容	本项目	正常排放源	拟替代 的污染 源口	其他	在建、拟 染源□		区域 污染源口
环境 监测	污染源监测	监测团	图子: ()			妄气监测□ 妄气监测□		无监 测□
计划	环境质量监测	监测团	图子: ()		监测点位	立数(2)		无监 测□
	环境影响			可以接受的	不可	以接受□		
评价 结论	大气环境 防护距离			距厂界	最远(0)) m		
	污染源	SO ₂ :	NO _x :		颗粒物:	() t/a		VOCs:

表 7.2 建设项目大气环境影响评价自查表

赣州稀土矿业有限公司稀土矿山整合(二期)技改项目环境影响报告书—全南县矿区

工作内容			自查项目	
年排放量	()	() t/a		() t/a
	t/a			
注:	:"□"为勾	J选项,填"v	√";"()"为内容填写项	

8 地表水环境影响评价

8.1 全南矿区地表水系及其小流域

全南县稀土矿区包括玉坑矿区和长城矿区,均属于桃江流域,桃江自南向北流经全南县。

玉坑稀土矿位于桃江上游,分为西部的井水河小流域和东部的上辽河小流域,井水河发源于矿区内部,向东南汇入桃江,上辽河发育于矿区内部,向东南汇入桃江;长城矿区分为西部的老屋溪小流域和东部的上迳河小流域,老屋溪发源于矿区内部,向西北流动,汇入黄田江,黄田江为桃江一级支流,龙迳河发源于矿区上游,向西北流动,汇入黄田江,黄田江为桃江一级支流。

桃江发源于全南县与广东省翁源县交界处的饭池嶂,流经全南县进入龙南县程龙镇聂徐,经 4km 左右至江口接纳太平江水,经渡江镇,绕县城西北抵犁头咀,与渥江水汇合,至三江口汇濂江水,至桃江乡锁口纳洒江水,再经龙迳口又入全南县境,后经信丰县流经赣县茅店江口流入贡江。桃江在全南境内长约 66km。

黄田江发源于全南县中寨乡与龙源坝镇交界的雪峰山北麓上窖河,属赣江水系贡江支流桃江一级支流,在县境内由西向东流经龙源坝、陂头、社迳三个乡镇;在江口与桃江汇合。其主要支流有青山河、黄沙河、水背河、万背河、白田河等 15 条主要支流。黄田江控制流域面积为 710km²,河长为 73.5km,干流平均坡降 7‰,多年平均流量为 20.5m³/s,最大洪峰流量为 1540m³/s,枯水流量为 4.35m³/s。

井水河发源于玉坑矿区内部,向东南汇入桃江,该河流域面积 25.56km², 多年平均流量 0.90m³/s,全长 9.81km。

上辽河发育于玉坑矿区内部,向东南汇入桃江,该河流域面积 9.53km², 多年平均流量 0.34m³/s,全长 6.66km。

老屋溪发源于长城矿区内部,向西北流动,汇入黄田江,该河流域面积13.05km²,多年平均流量0.46m³/s,全长3.65km。

龙迳河发源于矿区上游,向西北流动,汇入黄田江,该河流域面积45.74km²,多年平均流量1.61m³/s,全长14.04km。

全南县稀土矿区各流域汇总见表 8.1。

表 8.1 本项目各矿区流域划分一览表

区域	采矿证名 称	所属流域	小流域名称	流域面积 (km²)
	玉坑	桃江支流井水河	井水河小流域	25.56
全南	玉儿	桃江支流上辽河	上辽河小流域	9.53
土角	长城	桃江支流黄田江老屋溪	老屋溪小流域	13.05
	以坝	桃江支流黄田江龙迳河	龙迳河小流域	45.74

8.2 项目取水可靠性分析

(1) 矿区用水量

根据工程分析,全南稀土矿区各矿富集站取水情况见表 8.2。

多年 枯水 采矿 平均 生产时 富集站名 规模 t/a 取水量 年流 流域 证名 河流 流量 (REO) 间顺序 (m^3/d) 称 量 称 (m^3/s) (m^3/s) **** 188.83 富集站一 第1-3年 188.83 桃江支流上 第 1-10 上辽 **** 富集站二 0.34 0.22 辽河 年 河 玉坑 **** 188.83 富集站三 第 4-7 年 桃江支流井 第 8-18 井水 **** 富集站四 188.83 0.90 0.58 水河 年 河 桃江支流黄 老屋 *** 富集站一 1-12 94.41 0.46 0.30 田江老屋溪 溪 长城 桃江支流黄 龙迳 **** 1.04 富集站二 1-2 94.41 1.61 田江龙迳河 河

表 8.2 取水量与取水断面枯水期流量表

(2) 水量可靠性分析

全南稀土矿建设项目取水水源为各车间附近溪流。通过泵把水输送至配液 池或清水池,配好的浸矿液或顶水再用大泵输送至山顶高位池,再由高位池通 过管路把浸矿液或顶水自流到各注液井。

玉坑富集站一、二、三取水量 566.49m³/d, 取水点位于上辽河, 上辽河枯水年流量 0.22m³/s, 取水量远小于上辽河枯水年流量。

玉坑富集站四取水量 188.83m³/d, 取水点位于井水河, 井水河枯水年流量 0.58m³/s, 取水量远小于井水河枯水年流量。

长城富集站一取水量 94.41m³/d, 取水点位于老屋溪, 老屋溪枯水年流量 0.30m³/s, 取水量远小于老屋溪枯水年流量。

长城富集站二取水量 94.41m3/d, 取水点位于龙迳河, 龙迳河枯水年流量

1.04m³/s, 取水量远小干龙迳河枯水年流量。

因此,以上辽河、井水河、老屋溪、龙迳河作为本项目的供水水源,水源 充足,供水可靠。

(3) 水质可靠性分析

依据本次地表水环境质量监测结果,上辽河、井水河、老屋溪、龙迳河各项指标均满足《地表水环境质量标准》(GB 3838-2002)中的III类标准值,取水口断面水质可满足本项目取水对水质的要求。

项目生产用水主要用于配制浸矿液,对水质无特别要求,根据项目建设单位对各生产取水口现状水质核定,认为满足生产用水要求。

综上,本项目用水水量有保障、水质来源满足项目运营期用水要求。

8.3 正常情况对地表水影响分析

原地浸矿结束后需对采场加注清水进行清洗(约半年),利用原地浸矿采场的集液系统进行废水收集。收集的清洗废水硫酸盐、镁浓度较高,少部分直接用于第二批次采场浸矿补充水,大部分尾水经处理后(钙矾石法去除硫酸根和镁)循环利用于原采场清水清洗工序。废水不外排。

母液处理环节产生的沉淀池上清液、压滤车间压滤废水汇入硫酸镁配液 池,在配液池中通过调节 pH 值和硫酸镁浓度后,输送到采场高位水池作为浸 矿液重复使用,不外排。

项目生活污水采用化粪池处理后用作农肥和绿化。

因此正常情况下,本项目无废水外排,不会对区域地表水体产生影响。

8.4 无组织泄漏情况对地表水环境影响分析

8.4.1 预测方法

1) 预测情景:

按最不利影响考虑,7.5%的渗漏液进入地下水后,继而全部出露进入地表水。废水污染源包括生产期、清洗期、闭矿期以无组织形式渗漏的全部废水。根据工程分析,地表水预测因子为工艺特征污染物:硫酸盐、镁。具体废水污染源强如下:

表 8.3 各阶段渗漏母液污染源强 单位: mg/L

时段	镁	硫酸盐
生产期渗漏母液	984	8150
清洗期尾水	233	1273
闭矿期淋溶水	81.8	414

2) 预测模式:

按照完全混合断面污染物的浓度 C 的计算公式预测:

$$C = \frac{C_h Q_h + C_p Q_p}{Q_h + Q_p}$$

式中: C——河流水中某污染物浓度, mg/L;

 Q_p ——废水排放量, m^3/s ;

 C_p —污染源排放浓度,mg/L;

 Q_h —河流流量, m^3/s ;

 C_h —河流上游污染物浓度,mg/L。

8.4.2 预测结果与评价

8.4.2.1 流域渗漏量

根据工程分析,全南矿区各年度排产计划见表 8.4。

生产期、清洗期按照全南矿区排产计划可计算出对应母液渗漏量;闭矿期按照年均降雨量 1709.5mm,降雨入渗系数: 0.15,对照各流域服务矿块面积计算出渗漏量。

综上, 汇总计算出的各流域逐年渗漏量见表 8.5。

表 8.4 全南矿区各流域年度排产计划表 单位: t/a

年份	Ξ	E坑	长	:城	年度小计
平切	上辽河小流域	井水河小流域	老屋溪小流域	龙迳河小流域	平度小月
第1年	***	***	***	***	***
第2年	***	***	***	***	***
第3年	***	***	***		***
第4年	***	***	***		***
第 5 年	***	***	***		***
第6年	***	***	***		***
第7年	***	***	***		***
第8年	***	***	***		***
第9年	***	***	***		***
第 10 年	***	***	***		***
第 11 年		***	***		***
第 12 年		***	***		***
第13年		***			***
第 14 年		***			***
第 15 年		***			***
第 16 年		***			***
第 17 年		***			***
第 18 年		***			***

表 8.5 全南矿区各流域各年度渗漏量 单位: m³/d

		生产期				清池	先期			闭矿	广期	
年份	上辽河小流域	井水河小流域	老屋溪小流	龙迳河	上辽河	井水河	老屋溪	龙迳河	上辽河	井水河	老屋溪	龙迳河
	工过刊行机场	开外刊行机线	域	小流域	小流域	小流域	小流域	小流域	小流域	小流域	小流域	小流域
1	184.50	184.50	115.31	69.11								
2	184.50	184.50	92.25	9.21	184.50	184.50	115.31	69.11				
3	184.50	92.25	92.25		184.50	184.50	92.25	9.21	138.65	173.98	78.83	42.55
4	369.00	0.00	92.25		184.50	92.25	92.25		257.44	309.98	111.29	52.44
5	369.00	0.00	92.25		369.00	0.00	92.25		338.37	354.46	130.41	
6	369.00	0.00	92.25		369.00	0.00	92.25		523.23	354.46	142.84	

赣州稀土矿业有限公司稀土矿山整合(二期)技改项目环境影响报告书—全南县矿区

			39 业有限公司和	工,田正 日	_/9// 12/			T111 Z1 / E				
		生产期				清池	先期			闭研	广期	
年份	上辽河小流域	井水河小流域	老屋溪小流	龙迳河	上辽河	井水河	老屋溪	龙迳河	上辽河	井水河	老屋溪	龙迳河
	工之11170000	21/1411111010	域	小流域	小流域	小流域	小流域	小流域	小流域	小流域	小流域	小流域
7	221.40	0.00	92.25		369.00	0.00	92.25		681.73	354.46	167.58	
8	184.50	184.50	92.25		221.40	0.00	92.25		818.82	354.46	205	
9	184.50	184.50	92.25		184.50	184.50	92.25		909.58	354.46	276.6	
10	129.15	184.50	92.25		184.50	184.50	92.25		981.34	417.01	302.91	
11		184.50	92.25		129.15	184.50	92.25		1137.47	453.24	327.53	
12		184.50	92.25			184.50	92.25		1169.6	608.29	369.95	
13		184.50				184.50	92.25			703.38	396.35	
14		184.50				184.50				712.95	404.37	
15		184.50				184.50				745.92		
16		184.50				184.50				761.74		
17		184.50				184.50				784.75		
18		184.50				184.50				799.51		
19						184.50				829.6		
20										840.07		

8.4.2.2 流域本底值

根据地表水现状监测结果,按最不利情况取各季节中最大值作为本项目预测河段本底值。

8.4.2.3 预测结果与评价

根据预测,上辽河流域逐年水污染物浓度和标准指数情况如表 8.6 所示。

污染物预测值(mg/L) 标准指数 年份 镁 硫酸根 镁 硫酸根 1 9.59 79.47 / 0.318 2 11.75 90.99 0.364 3 12.25 93.32 0.373 4 21.85 171.31 0.685 5 24.05 182.56 0.730 0.739 6 24.59 184.70 7 17.96 127.76 0.511 8 0.426 15.03 106.43 9 14.93 105.67 / 0.423 10 12.49 84.55 0.338 11 31.76 6.15 0.127 12 24.32 0.097 4.81 13 4.81 24.32 0.097 标准限值 250

表 8.6 上辽河小流域逐年水污染物预测与标准指数结果

按富集站生产期、清洗期、闭矿期渗漏母液未正常截获,全部进入地表水最不利情况考虑,采用地表水最差水质监测值,根据逐年叠加渗漏废水的预测结果分析,小布河流域预测点各预测因子满足地表水环境质量标准III类标准限值。

(2) 井水河小流域

根据预测,井水河流域逐年水污染物浓度和标准指数情况如表 8.7 所示。

年份	污染物预	测值(mg/L)	标	准指数
十切	镁	硫酸根	镁	硫酸根
1	6.89	27.46	/	0.11
2	7.07	28.42	/	0.11
3	6.75	25.58	/	0.10
4	6.32	22.19	/	0.09
5	6.25	21.78	/	0.09
6	6.25	21.78	/	0.09
7	6.25	21.78	/	0.09

表 8.7 井水河小流域逐年水污染物预测与标准指数结果

8	7.00	28.03	/	0.11
9	7.18	28.99	/	0.12
10	7.20	29.09	/	0.12
11	7.21	29.15	/	0.12
12	7.26	29.40	/	0.12
13	7.29	29.55	/	0.12
14	7.29	29.56	/	0.12
15	7.30	29.62	/	0.12
16	7.30	29.64	/	0.12
17	7.31	29.68	/	0.12
18	7.32	29.70	/	0.12
19	6.57	23.52	/	0.09
20	6.40	22.57	/	0.09
标准限值		250	/	/

(3) 老屋溪小流域

根据预测,老屋溪小流域逐年水污染物浓度和标准指数情况如**表 8.8** 所示。

污染物预测值(mg/L) 标准指数 年份 镁 硫酸根 镁 硫酸根 36.46 1 4.40 0.146 2 34.74 0.139 4.55 3 34.79 0.139 4.58 4 4.67 35.27 0.141 5 4.73 35.55 0.142 6 4.77 35.73 0.143 0.144 7 4.84 36.09 8 4.95 36.63 0.147 9 37.67 0.151 5.16 10 5.24 38.04 0.152 / 11 5.31 38.40 0.154 12 5.44 39.01 0.156 13 10.77 0.043 2.06 14 1.27 6.42 0.026 15 1.27 6.42 0.026 标准限值 250

表 8.8 老屋溪小流域逐年水污染物预测与标准指数结果

(4) 龙迳河小流域

根据预测, 龙迳河小流域逐年水污染物浓度和标准指数情况如**表 8.9** 所示。

表 8.9 龙迳河小流域逐年水污染物预测与标准指数结果

污染物预测值(mg/L) 标准指数

	镁	硫酸根	镁	硫酸根
1	0.86	7.08	/	0.028
2	0.32	2.05	/	0.008
3	0.07	0.37	/	0.001
4	0.05	0.27	/	0.001
标准限值		250	/	/

8.5 项目对周边水源地的影响

本项目矿区内无集中式农村饮水工程水源地,矿区外周边分布有部分河流型水源地,但均不在本项目小流域出口下游,项目生产运行不会对周边河流水源地造成环境影响。

8.6 地表水环境影响评价结论

8.6.1 结论

- (1) 本项目的供水水源取至周边地表溪流,水源充足,供水可靠。
- (2)正常情况下本项目无废水外排,不会对区域地表水体产生影响。按最不利影响考虑,原地浸矿场 7.5%的渗漏液进入地下水后,继而全部出露进入地表水。考虑枯水期水质,考虑富集站生产期的正常渗漏,同时逐年叠加闭矿采区的自然渗漏,根据预测结果分析,全南县各稀土矿区各小流域预测断面的硫酸根均满足地表水环境质量III类标准,不改变下游水环境功能类别。
- (3)本项目建立从"源头削减控制-过程监管预警-末端风险防控"的水污染防控体系,环保工程验证效果显著,污染可控,本项目采取的水污染控制和水环境影响减缓措施有效可行。

8.6.2 地表水评价自查表

本评价对地表水环境影响评价主要内容与结论进行自查,具体如**表 8.10** 所示。

			The output of Days 14 H Table
工作内容		三内容	自查项目
		影响类型	水污染影响型 ☑;水文要素影响型 □
	影响识别	水环境保	饮用水水源保护区口;饮用水取水口口;涉水的自然保护区口;重要湿地
			□; 重点保护与珍稀水生生物的栖息地□;重要水生生物的自然产卵场及索饵场、越冬场和洄游通道、天然渔场等渔业水体□;涉水的风景名胜区□;
			其他 ▽

表 8.10 地表水环境影响自杳表

		水污染影响型	水文要素影响型		
	影响途径	直接排放□;间接排放□;其他 ☑	水温□;径流□;水域面积□		
	影响因子	持久性污染物 ☑;有毒有害污染物 □;非持久性污染物☑; pH 值 ☑;热污染 □;富营养化 □;其他 □	水温口; 水位(水深)口; 流速口; 流量		
		水污染影响型	水文要素影响型		
评化	介等级	一级 □; 二级 □; 三级 A □; 三 级 B ☑	一级口;二级口;三级口		
		调查项目	数据来源		
	区域污染源	已建口;在建口;拟建拟替代的口;其他口 污染源口	排污许可证 □; 环评 □; 环保验收 □; 既有实测 □; 现场监测 □; 入河排放口数据□; 其他 □		
	~ P//. I	调查时期	数据来源		
	受影响水 体水环境 质量	丰水期□; 平水期□; 枯水期 ☑; 冰封期□ 春季□; 夏季□; 秋季□; 冬季 ☑	生态环境保护主管部门口;补充监测 ☑;其他口		
	区域水资 源开发利 用状况		0%以下口;开发量 40%以上口		
~P 15		调查时期	数据来源		
现状调查	水文情势 调查	丰水期□; 平水期□; 枯水期□; 冰封期 □ 春季 □; 夏季 □; 秋季□; 冬 季 □	水行政主管部门□;补充监测□;其他 ☑		
		监测时期	监测因子 监测断面或点 位		
	补充监测	丰水期□;平水期□;枯水期☑; 冰封期□ 春季□;夏季□;秋季□;冬季	(pH、高锰酸盐指数、CODcr、BOD₅、氨氮、总磷、锌、铜、铅、砷、镉、铬(六价)、汞、氰化监测断面或点物、氟化物、氯化物、硝酸盐、硫酸盐、硫化物、石油类、粪大肠菌群、钙、镁、总硬度、溶解性总固体、全盐量)		
	评价范围		、河口及近岸海域: 面积() km2		
现状	评价因子	镉、铬(六价)、汞、氰化物、 物、石油类、粪大肠菌群、	BOD ₅ 、氨氮、总磷、锌、铜、铅、砷、 氟化物、氯化物、硝酸盐、硫酸盐、硫化 、总硬度、溶解性总固体、全盐量)		
评价	评价标准	近岸海域:第一类 🛭 ; 规划年	□; II类□; III类☑; IV类□; V类□ 第二类□; 第三类□; 第四类□ F评价标准()		
	评价时期		明□;枯水期☑;冰封期 □ 季□;秋季□;冬季☑		

		水环境功能区或水功能区	区、近岸海域环境以	力能区水质达	标状况		
		:	达标☑;不达标□				
		水环境控制单元或断面					
			质量状况□: 达标 🛭				
		对照断面、控制断面等位		犬况□: 达标	☑;不		
	评价结论		达标□		不达标区		
	VI VI ZA VL		≲泥污染评价☑				
			可用程度及其水文情	青势评价 □	_		
		• •	境质量回顾评价口	ェルスシロ ソール			
		流域(区域)水资源(包含					
		生态流量管理要求与现物	N俩足性度、建议。 况与河湖演变状况		(全則的		
	预测范围				和 () km2		
	预测因子	刊机: 区/文() M	(镁、硫酸盐)		17) () KIIIZ		
	1公公[四]	主水期口	平水期口;枯水期		月 ロ		
	预测时期		□;夏季□;秋季		.1 □		
	12(4)(10)	1	设计水文条件				
影响		建设期,	」; 生产运行期望;				
预测			5, 工// 之 17 //10 c , E常工况☑;非正常				
	预测情景		5染控制和减缓措施				
		区(流)域环境质量改善目标要求情景□					
			值解□:解析解☑;				
	预测方法		导则推荐模式 □: ⇒				
	水污染控						
	制和水环						
	境影响减						
	缓措施有						
	效性评价						
		* ** * * * * * * * * * * * * * * * * * *	混合区外满足水环				
		水环境功能区或水功能区、近岸海域环境功能区水质达标口					
		满足水环境保护目标水域水环境质量要求☑					
			境控制单元或断面		+ 汎項目 - 十一定		
		满足重点水污染物排放总量控制指标要求,重点行业建设项目, 主要污 染物排放满足等量或减量替代要求 □					
	水环境影		T. M. M. C. F. E. S. M. E. E. S. M. E. F. E. S. M. E. F. E. S. M. E. F. E. S. M. E. S. M. E. S. M. E. S. M. E. E. S. M.		£ _		
星公司台	响评价	水文要素影响型建设项					
影响评价		• • • • • • • • • • • • • • • • • • • •	可评价、生态流量符		1、工女小人们证		
H W		对于新设或调整入河(注	· · · · · · · · · · · · · · · · · · ·		}项目. 应包括排		
			口设置的环境合理		() () () () () () () () () () () () () (
		满足生态保护红线、水			D环境准入清单管		
			理要求 🗹				
	污染源排	污染物名称	排放量/ (t/a)	排放	浓度/(mg/L)		
	放量核算	()	()		()		
	替代源排	污染源名称 排污许	ツナ ひりかか マン・スポー	排放量/	排放浓度/		
	放情况	到用 ³		(t/a)	(mg/L)		
		生态流量:一般水期() () () () () () () () () () (() <u></u> <u></u>	() n3/s: 其他 ()		
	生态流量	工心加里: 双小别()m3/s; <u>世</u> 矣美 m3/s	系7旦州 (丿 II	1978; 光旭(/		
	确定	生态水位:一般水期	_	殖期()	m; 其他 () m		

	环保措施	施 污水处理设施☑;水文减缓设施□;生态流量保障设施□;区域削液 依托其他工程措施□;其他□				
			环境质量	污染源		
		监测方式	手动 ☑;自动□;无监测□	手动□;自动□;无监测☑		
防治	监测计划	监测点位	()	()		
措施			监测因子	(pH、镁、硫酸盐、总硬 度、溶解性总固体、铅、 砷、镉、铬、汞)	()	
	污染物排 放清单	不排放				
评价结论			可以接受 ☑;不可以接受 □			
	注: "□"为勾选项,可√;"()"为内容填写项;"备注"为其他补充内容。					

9 土壤环境影响评价

9.1 原地浸矿采场土壤环境影响分析

原地浸矿采场注液对土壤的影响主要为矿山深层土壤和地下水出露后下游 表层土壤的影响,因此依据地形地貌和地表水、地下水的流向,在正常工况和 非正常工况下,分别对表层土壤、深层土壤、下游表层土壤进行影响评价。

9.1.1 评价时段

生产期和清水清洗期

9.1.2 评价因子

镁、硫酸根、pH值、含盐量。

9.1.3 对土壤的影响分析

9.1.3.1 镁对土壤的影响分析

矿山进行注液时均通过注液管在地表下 1~1.5m 深的向下注液, 地表土壤不注液。通过原地浸矿采场渗漏的镁离子大部分通过稀土交换、杂质交换滞留在矿层中, 一部分被植物吸收, 部分渗漏淋溶迁移出土壤。按原地浸矿采场作为对象进行评价, 按照最不利情况, 考虑镁离子被土壤吸附的情况下对土壤的影响。

以 1 个 300t/a 原地浸矿采场为例,即最不利条件下镁离子变化情况,见表 9.1。

	项目	原地浸矿采场
	规模(t/a)	**
	面积(hm²)	5.66
	矿体赋存厚度 (m)	6.17
原地浸	是矿采场采矿层滞留量(t/a)	936.44
	渗漏镁(t/a)	23.65
母液渗漏至采	土壤体积(m³)	379786
场外部	土壤重量(t)	630445
	土壤镁增加量(mg/kg)	37.51

表 9.1 全南县 300 t/a 原地浸矿采场镁变化情况

注: 原地浸矿采场矿体最大厚度 30m, 最小厚度为 1 m, 平均按 6.17 计算; 土壤容重 1.66t/m³。

①原地浸矿采场表土层的影响

原地浸矿采场的表层土壤有 1~1.5m 的保护层,虽然土壤存在毛细作用,但是毛细作用主要是对土壤中的水的作用,这部分水的量很小,并且由于土壤中镁解析缓慢,正常情况下受毛细作用影响的土壤中的水的镁含量较小,因此受毛细作用影响的水对表层土壤的镁增加影响也较小,不会造成表层土壤中的镁明显增加,因此镁对原地浸矿采场表层土壤中的土壤酶和微生物不会造成明显的影响。

②原地浸矿采场采矿层的影响

由于镁增加的部位并不是表层土壤,均是位于表层土壤 1~1.5m 下的风化层,这部分风化层生物团粒结构作用很弱,微生物活动较弱,镁的增加不会引起碳素消耗的大量增加。矿区 300t/a 车间采场,原地浸矿采场土壤中滞留量为23.65t/a。

③母液渗漏至采场外部对下游土壤的影响

矿区 300t/a 车间采场,母液渗漏至采场外部的镁量为 936.44t/a,渗漏导致土壤中镁含量增加 37.51mg/kg。

根据当地土壤的实际调查,土壤中的镁背景浓度监测值含量在 0.10-1.66mg/kg 之间。最不利情况下,母液渗漏情况下将导致土壤的镁浓度最大增加约 37.51mg/kg,会造成土壤中的镁浓度升高。评价认为,注液深度在表层土壤1~1.5m 以下的条件下,原地浸矿采场的注液活动,虽然会导致表层土壤 1~1.5m 下的风化壳的镁增加,但是其对表层土壤的影响较小,一般情况表层土壤基本不会产生明显的盐碱化,但应长期跟踪观测其潜在影响。

9.1.3.2 硫酸根对土壤的影响分析

土壤评价按原地浸矿采场的土壤作为对象进行评价,由于实际影响的面积 大于原地浸矿采场的面积,因此评价的结果为最不利值。

以 300t/a 原地浸矿采场为例,即最不利条件下硫酸根变化情况,见表 9.2。

	项目	原地浸矿采场
	规模(t/a)	**
	面积(hm²)	5.66
	矿体赋存厚度 (m)	6.17
原地浸	是矿采场采矿层滞留量(t/a)	3851.349
母液渗漏至采场	渗漏硫酸根(t/a)	135.822
外部	土壤体积(m³)	379786

表 9.2 全南县 300 t/a 原地浸矿采场硫酸根变化情况

土壤重量(t)	630445
土壤硫酸根增加量(mg/kg)	215.43

①原地浸矿采场表土层的影响

原地浸矿在注液时,不会将浸矿液直接注入土壤中,而是会打注液孔,将 浸矿液注入表层土壤 1~1.5m 之下的风化层,因此注入的浸矿液中的硫酸镁一 般不会进入表层土壤,表层土壤中的硫酸根不会增加。通过现场调查,地表植 被长势良好,土壤未出现明显盐碱化现象,因此硫酸根对原地浸矿采场表层土 壤不会造成明显的板结影响。

②原地浸矿采场采矿层的影响

由于硫酸根增加的部位并不是表层土壤,均是位于表层土壤 1~1.5m 下的 风化层。矿区 300t/a 车间采场,原地浸矿采场土壤中滞留量为 3851.349 t/a。

③母液渗漏至采场下游土壤的影响

矿区 300t/a 车间采场,母液渗漏至采场外部的硫酸根量为 135.822 t/a,渗漏导致土壤中硫酸根含量增加 215.43 mg/kg。

根据当地土壤的实际调查,土壤中的可溶性硫酸盐范围为监测限以下到92.4mg/kg。 母 液 渗漏 情 况 下 将 导 致 土 壤 的 硫 酸 根 含 量 最 大 增 加 约 215.43mg/kg,会造成土壤中的硫酸根离子浓度升高。评价认为,注液深度在表层土壤 1~1.5m 以下的条件下,原地浸矿采场的注液活动,虽然会导致表层土壤 1~1.5m 下的风化壳的硫酸根增加,但是其对表层土壤的影响较小,一般情况表层土壤不会产生明显的板结,但应长期跟踪观测其潜在影响。

9.1.3.3 土壤酸化的影响分析

(1) 原地浸矿采场表土层的影响

所有监测点中,轻度酸化位点比例最高。原地浸矿采场表土层土壤 原地浸矿采场注入酸性浸矿液不会将浸矿液直接注入土壤中,而是会打注液孔,将浸矿液注入表层土壤 1~1.5m 之下的风化层,因此注入的酸性浸矿液一般不会进入表层土壤,因此不会造成原地浸矿采场表土层的明显酸化,表土层酸化程度基本不变。

(2) 原地浸矿采场采矿层的影响

所有监测点中,轻度酸化位点比例最高。酸性浸矿液进入采矿层置换出稀 土,部分浸矿液残留在采矿层土壤中,会使采矿层土壤氢离子增加,矿山生产 结束后,会采取清水清洗措施,可将残留在采矿层中的酸性浸矿液清洗出,因此,采取有效的清水清洗措施后,原地浸矿对采矿层的酸性影响较小。因浸矿液 pH 值为 4.5-4.8,现状土壤轻度酸化土壤为主,浸矿剂对采矿层土壤在浸矿期(约半年)有酸化加重影响,但浸矿结束后采用清洗措施,酸化影响会大大减小。因此,原地浸矿采场采矿层土壤酸化影响是暂时的。

(3) 母液渗漏至采场外部对下游土壤的影响

母液渗漏至采场外部的会导致下游土壤 pH 降低,但均在下游设置了收液 井和环保井,一旦发现母液泄漏将立即抽出返回水冶车间处理,因此采取防控 措施后,不会对下游土壤造成明显酸化影响。

9.1.3.4 含盐量对土壤的影响分析

依据现状监测结果土壤含盐量范围为检出限以下至 0.1mg/kg。依据《环境影响评价技术导则 土壤环境》(试行) HJ 964-2018 附录 D,项目区土壤主为未盐化土壤,且环境容量较大。

(1) 原地浸矿采场表土层的影响

原地浸矿采场注入硫酸盐浸矿液不会将浸矿液直接注入土壤中,而是会打注液孔,将浸矿液注入表层土壤 1~1.5m 之下的风化层,注入的硫酸盐浸矿液一般不会进入表层土壤,因此不会造成表层土壤盐化。

(2) 原地浸矿采场采矿层的影响

硫酸盐浸矿液进入采矿层置换出稀土,部分浸矿液残留在采矿层土壤中,会使采矿层土壤含盐量增加,但矿山生产结束后,会采取清水清洗措施,可将残留在采矿层中的硫酸盐浸矿液清大部分洗出,因此,采取有效的清水清洗措施后,原地浸矿不会对采矿层造成明显的盐化影响。

(3) 母液渗漏至采场外部对下游土壤的影响

母液渗漏至采场外部的会导致下游土壤含盐量增加,但均在下游设置了地下水监控井,一旦发现泄漏将立即抽出返回母液车间处理,因此采取防控措施后,不会对下游土壤造成明显的盐化影响。

9.2 富集站土壤环境影响分析

富集站生产期间采取防渗等环保措施后,正常生产情况下不向周边土壤排 放污染物质,因此不会对周边土壤环境造成酸化、盐化无影响。

9.3 临时弃土场土壤环境影响分析

临时弃土场主要临时贮存集液巷道和收液池等施工产生无法回填的的废弃 土石,主要土壤影响为雨水淋溶弃土后渗入周边土壤,但堆存岩土为风化层岩 土,为成土母岩,及时进行复垦,因此,临时弃土场不会对周边土壤环境造成 明显不利影响。

9.4 土壤环境保护措施与对策

9.4.1 源头控制措施

- (1) 在浸矿结束后,加注清水,清洗采矿层残留浸矿液,利用原地浸矿采场的集液系统进行清洗废水收集,送至富集站处理。
- (2)集液巷道、导流孔等所有巷道底板均进行防渗漏处理,采用底部水泥硬化防渗措施。原地浸矿采场高位池、集液沟、母液收集池,富集站母液中转池、富集池、配液池、产品池、尾水处理池、事故应急池、污泥间、硫酸储罐等构筑物采用满足重点防渗区要求的防渗膜防渗(等效黏土防渗层厚度≥6m,K<1.0×10⁻⁷cm/s或参照 GB18598 执行)。
 - (3) 严格管理固体废物的堆存,及时处理处置。

9.4.2 过程防控措施

利用地下水的截获和监控措施,对可能造成土壤污染的泄漏母液进行截获。利用在矿区内各小水文地质单元出口处设一级地下水截获措施,用于截获运营期和退役期受到污染的地下水。二级地下水污染防控措施的截获点根据矿体所在的小流域汇水方向进行布设,主要用于防止本项目矿区内的超标地下水可能流向矿界下游。

9.5 评价结论

- (1)原地浸矿采场生产不会对采场表层土壤造成不利影响,但会对采矿层 土壤和采矿下游土壤造成一定酸化和盐化影响,但采取清水清洗和监测井等环 保措施后,不会造成明显酸化和盐化影响。
- (2) 富集站生产期间采取防渗等环保措施后,正常生产情况下不向周边土壤排放污染物质,因此不会对土壤造成明显酸化和盐化影响。
 - (3) 临时弃土场临时贮存集液巷道和收液池等施工产生无法回填的的废弃

土石,主要土壤影响为雨水淋溶弃土后渗入周边土壤,但堆存岩土为风化层岩 土,为成土母岩,及时进行复垦,因此,临时弃土场不会对周边环境造成明显 不利影响。

原地浸矿采场和富集站土壤环境影响评价自查表见表 5.3、表 5.4。

表 9.3 原地浸矿采场自查表

工作内容 完成情况	TO THE PROPERTY OF THE PARTY OF					1		
土地利用类型 建设用地■: 农用地■: 未利用地□ 土地利用类型图 上地規模 1904.61 hm² (不含富集站) 核感目标信息 核感目标(农用地)、方位(周边)、距离 (20m-1000m) 影响途径 大气沉降□: 地面漫流□: 垂直入渗■: 地下水位□: 其他 () 探师後四: 操师 () 探师後 () 探师後 () 探师後 () 探师後回: 一级回: 一级回: 一级回: 一级回: 一级回: 一级回: 一级回: 一级		工作内容 完成情况			备注			
上地利用类型 上地利用地画 大利用地画 大利用地画 大利用地画 大利用地画 大利用地画 大河(周边) 上海 (20m-1000m) 上地 大河(四元) 上海 (20m-1000m) 上地 大河(四元) 上海 (20m-1000m) 上地 大河(四元) 上地 大河(元元) 上地 大		影响类型	污染影	『响型□; 生态影』	响型□; 两种兼有	=		
數感目标信息 敏感目标(农用地)、方位(周边)、距离(20m-1000m) 大气沉降□:地面漫流□:垂直入渗■:地下水位□:其他 ()		土地利用类型	建计	没用地■;农用地	ὑ■;未利用地□			
影响途径 大气沉降□; 地面漫流□; 垂直入滲■; 地下水位□; 其他 () 全部污染物		占地规模		1904.61 hm²(不	(含富集站)			
下でである	星公	敏感目标信息	敏感目标(农民	用地)、方位(周	边)、距离(20r	m-1000m)		
## 全部污染物	响	影响途径	大气沉降□; 均		[入渗■; 地下水位	位□; 其他		
所属土壤环境影		全部污染物						
阿评价项目类别 包含 10 10 10 10 10 10 10 1				硫酸盐、镁、p	H、含盐量			
评价工作等级 一级■: 二级□: 三级□ 资料收集 a)□: b)□: c)□; d)■ 理化特性 调查 13 个点位 规状监测点位 表层样点数 5 6 0-50cm 点位布置图 现状监测点位 表层样点数 5 0 0-300cm 点位布置图 现状监测因子 福、汞、砷、铅、铬、铜、镍、锌、六价铬、氨氮、硫酸 盘、镁、pH、含盐量(SSC)及 GB36600-2018、GB15618-2018 中基本项目 PH、含盐量、氨氮、硫酸根 证价标准 GB 15618■: GB 36600■: 表 D.1■: 表 D.2■: 其他□ 现状监测因子 pH、含盐量、氨氮、硫酸根 证境污染风险管控标准》(GB36600-2018)第二类用地筛选值,矿区范围内所有点位均未超过《土壤环境质量 淀炭 用地土壤污染风险管控标准》(GB15618-2018)风险筛选值,土壤环境质量较好。 (2) 0-0.5m 的表层土壤轻度酸化比例为 40.11%,0.5-1.5m 的深度土壤轻度酸化比例 13.37%; 1.5-3m 轻度酸化土壤比例 11.76%。项目区土壤以轻度酸化为主。(3) 土壤主体 SSC 均小于 1mg/kg,平均值为 0.14mg/kg,项目区土壤、以整度酸化为主。(3) 土壤主为未盐化土壤。 0.14mg/kg,项目区土壤上为未盐化土壤。 影响活量(原地浸矿采场及周边土壤)影响范围(原地浸矿采场及周边土壤)影响程度(不会造成明显不利影响) 影响范围(原地浸矿采场及周边土壤)影响程度(不会造成明显不利影响)			I	类■; II□; III	类□; IV 类□			
 ・		敏感程度		敏感■; 较敏感□	; 不敏感口			
理化特性 调査 13 个点位 同附录 C		评价工作等级						
現状			, ,					
	刊	理化特性		1		T .	同附录 C	
現状监测点位 表层样点数				占地范围内	占地范围外	深度		
技術样点数 5	调	现状监测点位	表层样点数	5	6	0-50cm		
マップ では、一部、名、何、、は、いいでは、いいでは、いいでは、いいでは、いいでは、いいでは、いいでは				-	v			
评价因子		现状监测因子						
(1) 矿区范围内所有点位均未超过《土壤环境质量 建设用地土壤污染风险管控标准》(GB36600-2018)第二类用地筛选值,矿区范围外农用地未超过《土壤环境质量 农用地土壤污染风险管控标准》(GB15618-2018)风险筛选值,土壤环境质量较好。 (2) 0-0.5m 的表层土壤轻度酸化比例为 40.11%, 0.5-1.5m 的深度土壤轻度酸化比例为 40.11%, 0.5-1.5m 的深度土壤轻度酸化比例为 13.37%; 1.5-3m 轻度酸化土壤比例 11.76%。项目区土壤以轻度酸化为主。(3)土壤主体 SSC 均小于 lmg/kg,平均值为0.14mg/kg,项目区土壤主为未盐化土壤。 ———————————————————————————————————		评价因子		pH、含盐量、氨	(氮、硫酸根			
现状评价结论 用地土壤污染风险管控标准》(GB36600-2018)第二类用地筛选值,矿区范围外农用地未超过《土壤环境质量 农用地土壤污染风险管控标准》(GB15618-2018)风险筛选值,土壤环境质量较好。 (2)0-0.5m的表层土壤轻度酸化比例为 40.11%,0.5-1.5m的深度土壤轻度酸化比例为 40.11%,0.5-1.5m的深度土壤轻度酸化比例为 13.37%;1.5-3m 轻度酸化土壤比例 11.76%。项目区土壤以轻度酸化为主。(3)土壤主体 SSC 均小于 lmg/kg,平均值为0.14mg/kg,项目区土壤主为未盐化土壤。 影响为方法 时录 E□;时录 F□;其他() 影响范围(原地浸矿采场及周边土壤)影响程度(不会造成明显不利影响)		评价标准	GB 15618 ■ ;	GB 36600■; 表	ē D.1∎;表 D.2■	;其他□		
预测方法 附录 E□; 附录 F□; 其他() 影响范围(原地浸矿采场及周边土壤) 影响程度(不会造成明显不利影响)	状评	现状评价结论	用地土壤污染风地筛选值,矿区地土壤污染风(2)0-0.5m的的深度土壤轻度例11.7(3)土均	(1) 矿区范围内所有点位均未超过《土壤环境质量 建设用地土壤污染风险管控标准》(GB36600-2018)第二类用也筛选值,矿区范围外农用地未超过《土壤环境质量 农用地土壤污染风险管控标准》(GB15618-2018)风险筛选值,土壤环境质量较好。 (2) 0-0.5m 的表层土壤轻度酸化比例为 40.11%,0.5-1.5m 均深度土壤轻度酸化比例 13.37%; 1.5-3m 轻度酸化土壤比例 11.76%。项目区土壤以轻度酸化为主。 (3) 土壤主体 SSC 均小于 1mg/kg,平均值为				
	显么	预测因子						
预 预测分析内容 影响記围 (原地浸矿 米场及周辺土壤) 影响程度 (不会造成明显不利影响)		预测方法	[
	预	预测分析内容)		
	测	预测结论						

		不达标结论: a) □; b)□			
防治	防控措施	土壤环境质量现状保障□;源头控制■;过程防控■;其他□			
		监测点数	监测指标	监测频次	
措施	跟踪监测		pH、含盐量、 镁、硫酸根	1 次/3 年	
ル也	信息公开指标	监测结身			
	原地浸矿采场生产不会对采场表层土壤造成不利影响,会对采矿层土壤和采矿下游土壤造成一定酸化和盐化影响,但采取清水清洗和监测井等环保措施后,不会造成明显不利影响。				
	注 1: "□"为勾选项,可 V;"()"为内容填写项;"备注"为其他补充内容。				
	注 2:需要分别开展土壤环境影响评级工作的,分别填写自查表。				

表 9.4 富集站自查表

	工 上 上			\$ 1-1: MIT		A 12.	
	工作内容	_ \\	7	计 情况		备注	
	影响类型	污染	影响型■;生态	影响型□;两科	中兼有□		
	土地利用类型	7	建设用地■;农月	日州•• 未利田	₩□	土地利用	
	工地利加大宝	y	主权川地■;水川	11 YEL■; YEAT() 11	<i>⊁</i> Ľ⊔	类型图	
	占地规模			6hm ²			
	敏感目标信息	敏感目标	示(农用地)、方	位(周边)、	距离(20m-		
影响	取念日 你		1000				
响	目/ n/h ^人/フ	大气沉降口	; 地面漫流□;	垂直入渗■; 牡	上下水位□; 其		
识	影响途径		他	()			
别	A >>>> > > > > > > > > > > > > > > > >	镉、汞、硒	申、铅、铬、铜、		价铬、氨氮、		
7.4	全部污染物		流酸盐、镁、pH				
	 特征因子			、pH、含盐量			
	所属土壤环境影响评价			*			
	项目类别		I 类■; II□; III 类□; IV 类□				
	敏感程度		敏感■;较敏感口;不敏感口				
	评价工作等级			<u>8□; 不敬恐□</u> 级□; 三级口	-		
	资料收集		a) □; b) □; c) □; d) ■				
			调査0个点位				
717	理化特性						
现	现状监测点位		古地氾违闪	古地氾固外	深度		
状		表层样点	0	0	0-50cm	1. 1. 1. 1.	
调	, s , t === , t,,	数		-		点位布置	
查		柱状样点	1	0	0-300cm	图	
内		数					
容			申、铅、铬、铜、				
	现状监测因子	硫酸盐、销	美、pH、含盐量	(SSC)及GE	36600-2018、		
				18 中基本项目			
	评价因子		pH、含盐量	、镁、硫酸根			
现	评价标准	GB 15618	ı; GB 36600 □ ;	表 D.1■;表	D.2■; 其他□		
状		土壤中无机	几和重金属指标均	匀未超过《土均	襄环境质量 建		
评	II. \ // / I \ /		襄污染风险管控	· · · —			
价	现状评价结论		帝选值,土壤中 ²				
ν i	边土壤环境质量良好。						
影			pH、含盐量、镁、硫酸根				
响)		
预	1火火1/1/石						
测	预测分析内容						
坝川		京	响程度(不会造	1. 双	シ門リ ノ		

	预测结论		达标结论: a) ■; b) □; c)□; 不达标结论: a) □; b)□		
防	防控措施	土壤环境质量现状保障□;源头控制■;过程防控■; 其他□			
治		监测点数	监测指标	监测频次	
措施	跟踪监测		pH、含盐量、 镁、硫酸根	1次/3年	
	信息公开指标 监测结果、频次				
	富集站生产期间采取防渗等环保措施后,正常生产情 评价结论 况下不向周边土壤排放污染物质,因此不会对周边土 壤环境造成酸化、盐化无影响。				
	注 1: "□"为勾选项,可 V;"()"为内容填写项;"备注"为其他补充内容。				
	注 2:需要分别	开展土壤环境影响评组	及工作的,分别填写	百查表。	

10 声环境影响预测

10.1 主要噪声源及源强

拟建项目噪声源主要有富集站水泵、压滤机、空压机噪声、原地浸矿采场收液巷道掘进施工噪声等组成。

原地浸矿采矿场噪声源:原地浸矿只需在基建期进行打眼、凿岩、挖掘等作业,完成注液孔和集液巷道的施工,只在白天作业。

富集站噪声源: 主要是压滤设备、空压机和水泵产生的噪声。

其它噪声源:主要是汽车运输产生的噪声。

富集站的主要噪声源及其源强见表 10-1。

序号	名称		声源强度 dB(A)	防治措施	控制后强 度 dB(A)
1		压滤机	80~85	置于车间内、设备加减振装置	70~75
2	富集站	空压机	100~105	置于室内、设备加减振装置、 墙体隔声	75~80
3		水泵	85~95	置于池中	65~75

表 10-1 噪声源及源强

10.2 声环境关心点分析

经过现场调查, 富集站 200m 范围内无居民点等声环境敏感目标。

10.3 声环境影响预测

根据工程分析可知,各拟建富集站基本布置在山坡地带,设备基本相同, 选择烂泥坑稀土矿富集站一及赤岗稀土矿富集站四进行预测。

(1) 声源模型化

由于噪声源的尺寸大小比其距预测点的距离小得多,声源模型化,视作点源。

(2) 源强

富集站的主要噪声源及其源强见表 10-1。

(3) 预测模式

评价采用《环境影响评价技术导则 声环境》(HJ2.4-2009)中推荐的工业噪声室外声源预测模式和多源噪声叠加公式进行预测。

①室外声源预测模式

$L_p(r)=L_w+D_c-A$

 $A = A_{div} + A_{atm} + A_{gr} + A_{bar} + A_{misc}$

式中:

Lw-----倍频带声功率级, dB;

Dc----指向性校正, dB;

A -----倍频带衰减, dB;

Adiv ------几何发散引起的倍频带衰减, dB;

Aatm-----大气吸收引起的倍频带衰减, dB;

Agr ------地面效应引起的倍频带衰减, dB;

Abar -----声屏障引起的倍频带衰减, dB;

Amisc -----其他多方面效应引起的倍频带衰减, dB。

②多声源叠加模式

$$L_{eqg} = 10 \lg \left[\frac{1}{T} \left(\sum_{i=1}^{N} t_i 10^{L_{Ai}} + \sum_{j=1}^{M} t_j 10^{L_{Aj}} \right) \right]$$

式中:

Legg------拟建工程声源对预测点产生的贡献值, dB(A);

 L_{Ai} ------第 i 个室外声源在预测点产生的 A 声级,dB(A);

 L_{Ai} ------第 i 个室外声源在预测点产生的 A 声级,dB(A);

t_i ------在 T 时间内 i 声源工作时间, s;

t_i ------在 T 时间内 j 声源工作时间, s;

T -----用于计算等效声级的时间, s;

N -----室外声源个数;

M -----等效室外声源个数。

(4) 预测方案

本评价声环境影响仅预测富集站的厂界噪声。

(5) 厂界噪声预测结果及分析

富集站的预测结果表明富集站厂界噪声均能达到《工业企业厂界环境噪声排放标准》(GB12348-2008)中2类声环境功能区标准(昼间 60dB(A)、夜间50dB)限值要求,富集站的运行对周边声环境影响不大,且富集站 200m 范围内无声环境敏感目标,不会对敏感目标造成影响。

10.4 声环境影响分析

(1) 富集站厂界噪声达标排放分析

本项目各富集站基本布置在山坡地带,设备基本相同,厂界距离相差不大,预测结果表明各富集站厂界噪声均达到《工业企业厂界环境噪声排放标准》(GB12348-2008)中2类声环境功能区标准(昼间 60dB(A)、夜间 50dB(A))限值要求,评价认为富集站的运行对周边声环境影响不大。

(2) 敏感点声环境影响分析

本项目富集站 200m 范围内无声环境敏感目标,不会对敏感目标造成影响。

11 固体废物影响分析

11.1 固体废物产生量和处置量

项目生产期产生的固体废物主要是富集站剥离表土、注液孔和集液巷道开挖产生的废弃土石方、富集站产生的污泥、生活垃圾。

(1) 富集站剥离表土

富集站表土剥离量共为 1.28 万 m³ 堆存至附近的表土堆存场,最终表土作为复垦用土。

(2) 注液孔弃土

原地浸矿采场挖掘注液孔产生的废弃土石方共 2.58 万 m³, 采取装袋就近堆存在注液孔周边, 待浸矿完毕后, 回填注液孔。

(3) 集液巷道、导流孔、集液沟等收液系统弃土

在整个生产期,集液巷道、导流沟产生废弃土石方约为 1.46 万 m³, 堆存于临时弃土场。最终部分约 1.10 万 m³ 回填到采场收液巷道,无法回填的废弃土石方约 0.36 万 m³ 堆存在临时弃土场。

(4) 污泥

清水清洗期,淋洗尾水需要在富集站自行处理后循环淋洗,采用钙矾石法,会产生污泥。本项目清水清洗期,共产生污泥量约为 2970t/a。在仓库内设置污泥储存间,按相关规范对污泥暂存间采取防渗等措施,并妥善处置或综合利用。

(5) 生活垃圾

本项目生活垃圾产生量约为 11.88t/a,集中收集后定期运至当地环卫部门指定场所统一处理。

污染物	性质 产生量		处置量及处置措施		
表土	第I类一般工业 固体废物	1.28万 m³	堆存至附近的表土堆存场,最终表土作为复垦用 土。		
注液孔 废弃土 石方	第I类一般工业 固体废物	2.58万 m³	就近装袋堆存在注液孔周边,待浸矿完毕后,回 填注液孔		
收液系 统废弃 土石方	第1类一般工业		产生废弃土石方量约为 1.46 万 m³, 用于回填到 采场采空区约 1.10 万 m³, 堆存于临时弃土场的 约 0.36 万 m³。		
污泥	一般工业固体	2970t/a			

表 11.1 项目固体废物产生与处置量

	废物		
生活垃		11 00+/0	集中收集后定期运至当地环卫部门指定场所统一
圾		11.88t/a	处理

11.2 固体废物属性

注液孔和集液巷道开挖产生的废弃土石方属于一般工业固体废物。

富集站产生的污泥,类比赣州稀土矿山整合(一期)技改项目试验数据, 不具有危险废物浸出毒性特征。污泥暂定按照一般工业固体废物管理。

11.3 固体废物贮存场符合性分析

11.3.1 临时弃土场场址分析

集液巷道掘进产生的废弃土石方,部分回填到集液巷道中,无法回填的土石方堆存在临时弃土场。临时弃土场位置根据运输距离较短、风险最小、恢复最快、相对集中的原则布置。

本项目中临时弃土场设置较多,将废弃土石方按"运输距离较短、风险最小、恢复最快、相对集中"的原则进行堆存,主要原因有以下 5 个方面:

- (1)南方雨水较多,如果所有废弃土石方集中堆置,堆存高度较高,在暴雨天气发生滑坡和泥石流的风险较大。临时弃土场高度不高(2~3m),坡度不大(一般在 30°以下),可以有效的降低地质灾害的潜在危险,排水系统容易控制。
- (2)从生态破坏来讲,采用集中堆存的方法则需要修路,修路造成的破坏远远大于临时弃土场本身的破坏。如临时弃土场集中堆存,运输道路需环山修建,不能为当地居民利用,在矿山服务期满后,只能废弃。本着不修公路,采用人工堆存,最大程度保护当地生态环境,集液巷道弃土原则就近临时堆存在原地浸矿采场附近的凹地。
- (3)如果废弃土石方采用集中堆存设计,对于土地复垦而言,临时弃土场的大部分复垦工作必须等待临时弃土场全部完工才可进行,而采用就近分散设置临时弃土场,临时弃土场堆存的为集液巷道弃土,量较小,在集液巷道施工结束后即可进行复垦。可以实现边破坏边复垦。
- (4)从景观的角度来讲,当地为低山丘陵地区,如果将废弃土石方全部集中堆存由于临时弃土场高度较高,则对当地景观有影响较大;采用就近分散设置临时弃土场,堆存高度不大、坡度也不大,对当地丘陵山地景观影响不大。

本项目中的临时弃土场采用运输距离较短、风险最小、恢复最快、相对集中的原则,因地制宜进行合理设计。

临时弃土场设在原地浸矿采场附近的凹地,根据《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)中I类场场址选择的环境保护要求进行设置。评价认为,临时弃土场选址从环境角度考虑是可行的。临时弃土场场址环境可行性分析见表 11.2。

序号	一般工业固废I类场厂址 选择的环境保护要求	本工程实际情况	是否满 足要求
1	不得选在生态保护红线区域、永久基本农田 集中区域或其他需要特别保护的区域内	临时弃土场不在生态保护红线 区域,不占基本农田	满足
2	应避开活动断层、溶洞区、天然滑坡或泥石 流影响区以及湿地等区域	场址地质灾害危险性小,无大 的不良工程地质条件	满足
3	不得选在江河、湖泊、运河、渠道、水库最高水位线以下的滩地和岸坡,以及国家和地方长远规划中的水库等人工蓄水设施的淹没区和保护区之内	不在江河、湖泊、水库等最高水位线以下的滩地和岸坡;不 在国家和地方长远规划中的水 库等人工蓄水设施的淹没区和 保护区之内	满足

表 11.2 临时弃土场场址环境可行性分析一览表

11.3.2 污泥储存间场址分析

污泥储存间设置在富集站内,储量小,设置在室内,地面采取防雨篷布进 行防渗,符合标准的要求。评价认为,污泥储存间选址从环境角度考虑是可行 的。

11.4 固体废物贮存场环境影响分析

11.4.1 临时弃土场环境影响分析

临时弃土场在落实好 GB18599-2020 关于I类场设计、运行管理方面的各项环保要求后,根据国内矿山临时弃土场的运行经验,不会对周围水环境和土壤环境造成明显不利影响。

11.4.2 污泥储存间环境影响分析

为了对固体废物进行更为合理有效控制,避免对水环境的影响,本项目尾水处理污泥暂存于污泥储存间,污泥储存间位于室内,地面采取防雨篷布防渗。类比赣州稀土矿山整合(一期)技改项目试验数据,污泥不具备危险废物浸出毒性和腐蚀性,暂定为一般固废管理并妥善处置。在仓库内设置污泥储存间,污泥暂存期间按照《危险废物贮存污染物控制标准》(GB18597-2001)设

计和建设,基础必须防渗,防渗层渗透系数≤10⁻¹⁰cm/s。严格按照相关要求进行管理,保证雨水不进入、废水不外排、废渣不流失,最大限度地减轻污泥对外环境的影响。

11.5 小结

- (1)项目生产期产生的固体废物主要是富集站表土、注液孔和集液巷道开挖产生的废弃土石方、富集站污泥、生活垃圾。挖掘注液孔产生的废弃土石方采取装袋就近堆存在注液孔周边,待浸矿完毕后,回填注液孔;集液巷道、导流沟开挖产生的废弃土石方,最终部分用于回填采空区,剩余无法回填部分堆存于临时弃土场;富集站产生的污泥,类比暂定为一般固废管理并妥善处置。生活垃集中收集后定期运至当地环卫部门指定场所统一处理。
- (2)临时弃土场在落实好 GB18599-2020 关于I类场设计、运行管理方面的各项环保要求后,根据国内矿山临时弃土场的运行经验,不会对周围大气、水环境造成明显不利影响。
- (3)污泥储存间堆存在室内,室内设置贮渣池,池体及地面采用天然或人工材料构筑防渗层,防渗层渗透系数≤10⁻¹⁰cm/s,不会对周围水环境、土壤环境造成明显不利影响。

12 生态环境影响评价

12.1 生态环境现状调查与评价

充分搜集和利用现有研究成果资料,利用遥感(RS)、全球定位系统(GPS)、地理信息系统(GIS)等技术手段,进行数据采集;结合地形图进行现场调查、踏勘等;对资料、信息和数据进行汇总、整理、分析,并完成生态制图。

遥感影像数据采用 planetscope 多光谱影像(分辨率 4m)作为解译基础,同时利用 googleEarth 及现场踏勘进行校正,提取土地利用、植被、景观等信息。

12.1.1 生态系统类型

依据评价区的自然地理条件和植被资源情况,评价区生态系统类型大致可分为四大类,包括林地生态系统、农田生态系统、水域生态系统和人工建筑生态系统,详见表 12-1。

序号	生态系统类型	主要物种/内容	分 布	
1	林地生态系统	马尾松、杉树、毛竹、黄荆、芒 萁等	片状、块状分布于评价区	
2	农田生态系统	水稻、蔬菜、脐橙、茶树等	片状、点状分布于评价区	
3	水域生态系统	河流	带状、网状分布于评价区	
4	人工建筑生态系 统	工矿仓储设施、住宅建筑以及交 通运输用地等	点状、片状、块状、带状分 布于评价区	

表 12-1 评价区生态系统类型及特征

林地生态系统是区域中低山地区分布最为普遍的类型,林业植被受人为活动影响较大。林地生态系统中,以杉树、马尾松等次生林为主要类型,灌木和草丛在林下广泛分布。在丘陵、河谷阶地以农田生态系统和人工建筑生态系统为代表,农田生态系统主要位于村庄周围、河流沿线,包括农作物和经济作物。人工建筑生态系统基质包括工矿仓储设施、村民住宅建筑、交通建筑设施等。人工建筑设施对林地生态系统进行着点状、片状、带状、块状的切割,影响着林业生态结构。水域生态系统以带状、网状广泛分布于评价区。总体上,目前评价区内生态系统类型以林地生态系统为主,系统稳定性和抗干扰能力主要受林地生态系统主导。

12.1.2 景观现状

(1) 长城稀土矿

结合景观生态类型分类原则,将评价区内景观利用类型分为:林地景观、农业景观、水域景观、建设用地景观和其他景观,共5类一级景观。

评价区不同景观类型的面积和斑块数量统计情况见表 12-2。

斑块数 比例 面积 比例 序号 ·级景观类型 (个) (%) (hm2)(%) 1 林地景观 320 23.70 1700.52 78.98 2 农业景观 486 36.00 297.08 13.80 水域景观 18.74 74.08 3 253 3.44 建设用地景观 4 255 18.89 64.04 2.97 5 工矿用地景观 17 1.26 12.66 0.59 6 其他景观 19 1.41 4.61 0.21 7 合 计 1350 100.00 2152.99 100.00

表 12-2 长城稀土矿评价区不同景观类型统计

可见,长城稀土矿评价区斑块总数 1350 个,总面积 2152.99hm²。

林地景观、农业景观、水域景观、建设用地景观、工矿用地景观、其他景观的斑块数分别为 320 个、486 个、253 个、255 个、17 个、19 个,分别占评价区总斑块数的 23.70%、36.00%、18.74%、18.89%、1.26%、1.41%。

从斑块数来看,农业景观斑块数最多,为 486 个,占 36%;从面积比例来看,林地景观所占面积比例最大,为 1700.52hm²,占 78.98%。总体上,长城稀土矿区评价区内的景观类型以林地景观为主要控制类型。

(2) 玉坑稀土矿

结合景观生态类型分类原则,将评价区内景观利用类型分为:林地景观、农业景观、水域景观、建设用地景观、其他景观共5类一级景观。

评价区不同景观类型的面积和斑块数量统计情况见表 12-3。

序号	一级景观类型	斑块数	比例	面积	比例
万 与		(个)	(%)	(hm^2)	(%)
1	林地景观	30	8.65%	615.35	67.24%
2	农业景观	132	38.04%	106.6	11.65%
3	水域景观	48	13.83%	14.86	1.62%
4	建设用地景观	93	26.80%	138.03	15.08%
5	工矿用地景观	9	2.59%	10.64	1.16%
6	其他景观	35	10.09%	30.2	3.30%

表 12-3 玉坑稀土矿评价区不同景观类型统计

7	合 计	347	100	915.16	100

可见, 玉坑稀土矿评价区斑块总数 347 个, 总面积 915.16hm²。

林地景观、农业景观、水域景观、建设用地景观、工矿用地景观、其他景观的斑块数分别为 30 个、132 个、48 个、93 个、9 个、35 个,分别占评价区总斑块数的 8.65%、38.04%、13.83%、26.80%、2.59%、10.09%。

从斑块数来看,农业景观斑块数最多,为 132 个,占 38.04%;从面积比例来看,林地景观所占面积比例最大,为 615.35hm²,占 67.24%。总体上,玉坑稀土矿区评价区内的景观类型以林地景观为主要控制类型。

12.1.3 土地利用现状

(1) 长城稀土矿区

全南长城评价区总面积 2152.99hm², 其中耕地、园地、林地、草地、工矿仓储用地、住宅用地、交通运输用地、水域及水利设施用地、其他土地占地面积分别为 154.27hm²、142.81hm²、1700.52hm²、1.77hm²、12.66hm²、35.66hm²、28.38hm²、74.08hm²、2.84hm²,分别占评价区土地总面积的7.17%、6.63%、78.98%、0.08%、0.59%、1.66%、1.32%、3.44%、0.13%。可见,全南长城稀土矿评价区土地利用结构以林地为主,面积为 1700.52hm²,占78.98%;其次为园地和耕地,面积为 154.27hm²、142.81hm²,分别占 7.17%和6.63%。

序号	土地利用类型	面积 (hm²)	比例 (%)
1	01 耕地	154.27	7.17
2	02 园地	142.81	6.63
3	03 林地	1700.52	78.98
4	04 草地	1.77	0.08
5	06 工矿仓储用地	12.66	0.59
6	07 住宅用地	35.66	1.66
7	10 交通运输用地	28.38	1.32
8	11 水域及水利设施用地	74.08	3.44
9	12 其他土地	2.84	0.13
10	合计	2152.99	100.00

表 12.4 全南长城稀土矿评价区土地利用现状统计

(2) 玉坑稀土矿区

全南玉坑评价区总面积 915.16hm², 其中耕地、园地、林地、草地、工矿仓储用地、住宅用地、交通运输用地、水域及水利设施用地、其他土地占地面积分别为 87.19hm²、18.81hm²、615.35hm²、25.02hm²、10.64hm²、138.04hm²、

1.38hm²、14.87hm²、3.8hm²,分别占评价区土地总面积的 9.53%、2.06%、67.24%、2.73%、1.16%、15.08%、0.15%、1.62%、0.42%。可见,全南玉坑稀土矿评价区土地利用结构以林地为主,面积为 615.35hm²,占 67.24%;其次为住宅用地和耕地,面积为 138.04hm²、87.19hm²,分别占 15.08%和 9.53%。

序号 土地利用类型 面积(hm²) 比例 (%) 01 耕地 1 87.19 9.53% 02 园地 2 18.81 2.06% 3 03 林地 67.24% 615.35 04 草地 4 25.02 2.73% 5 06 工矿仓储用地 10.64 1.16% 6 07 住宅用地 138.04 15.08% 7 10 交通运输用地 1.38 0.15% 8 11 水域及水利设施用地 14.87 1.62% 9 12 其他土地 3.8 0.42% 10 100 合计 915.16

表 12-5 全南玉坑评价区土地利用现状统计

12.1.4 陆生植被现状

1.1.1.1 植被类型

在实地调查的基础上,参考《中国植被》、《江西森林》及该区域相关生物 多样性考察报告,将该评价区域主要植被类型分为两大类,分别为:

I自然植被

- I-1 阔叶混交林
- I-2 针阔混交林
- I-3 其他草地

II人工植被

- II-1 桉树林
- II-2 松树林
- II-3 杉木林
- II-4 毛竹林
- II-5 针叶混交林
- II-6 果木林
- II-7农田植被

该区域的地带性植被为亚热带常绿阔叶林,但因为该区域人为影响,绝大

部分退化为次生林类型,包括自然次生林和人工次生林。区域内的主要植被类型多是人工种植的桉树林、杉木林、马尾松林和混交林。同时,在中高海拔地块有一些自然的阔叶林存在。

(1) 自然植被

1) 阔叶混交林

该植被类型位于评价范围内海拔较高的山地,人类活动影响较小。该类型 优势树种一般不明显,林冠繁茂,参差不齐,树种组成较为复杂。群落具有常 绿阔叶林特征,建群种主要为枫香、木荷、青冈、檫木、麻栎等,伴生种有泡 桐、桤木、苦楝等。灌木层主要有盐肤木、黄荆、赛山莓、山黄麻、小叶石楠 等。草本层主要有芒、蕨类、淡竹叶、地稔、黑莎草等。

2) 针阔混交林

主要是一种或两种针叶树与多种阔叶树混交形成。构成乔木针叶树种包括 松树、杉树等;阔叶树种包括枫香、青冈等。灌木层主要有盐肤木、八角枫、 空心泡等。草本层主要有蚂蟥七、流苏子、苔草、牛筋草等。

3) 其他草地

原生草丛以块状、点状分布于建设区域附近,造林前期砍伐地等。平均高度约 1m,总盖度约 85%。草本组成种类较为单一,包括蕨类、芒、小蓬草等,草丛中混生一些灌木,如木姜子、野漆树、山莓等。

(2) 人工植被

1) 桉树林

评价区人工植被桉树分布较广,群落总盖度一般约 75%,乔木层主要为桉树,郁闭度为 0.6,高约 18m;灌木层盖度 50%,高约 5m;草本层盖度达 80%,高约 0.8m,灌木层主要有盐肤木、金樱子、小叶石楠、黄荆等;草本层伴生有苦苣菜、芒萁、五节芒、藤本植物菝葜等。

2) 松树林

评价区马尾松是分布最广的人工植被,群落盖度一般约 75%,乔木层主要为马尾松,郁闭度为 0.8,高约 3m;灌木层盖度约 50%,高约 7m,主要有木姜子、长叶冻绿、盐肤木等伴生;草本层盖度约 50%,伴生有芒萁、五节芒、牛筋草、海金沙、藤崖豆等。

3) 杉木林

评价区主要为人工种植的杉木针叶纯林,分布较广,群落总盖度一般约70%,乔木层主要为杉木,郁闭度为0.6,高约18m;草本层盖度达80%,高约0.8m,灌木层主要有油茶、山姜子、盐肤木、野漆树、黄荆等,主要伴生有狗尾草、五节芒、芒萁、乌毛蕨等。藤本植物包括金樱子等。

4) 毛竹林

毛竹是禾本科刚竹属散生型常绿乔木状竹类植物,主要分布于居民区周围 的丘陵地区。毛竹林林相整齐,成单层水平郁闭,群落结构简单,林下灌木和 草本植物稀少。草本主要有血水草、淡竹叶、海金沙等。

5) 针叶混交林

评级区局部地区人工种植的针叶林混交,乔木层主要为松树、杉木等,郁闭度为 0.6,高约 18m;灌木层盖度 50%,高约 3m;主要伴生长叶冻绿、八角枫、茅栗、蕨类、芒萁等、海金沙等。

6) 果木林

赣州市是中国脐橙之乡, 2020 年, 赣州市水果产量 170.71 万吨, 其中脐 橙产量 135.13 万吨。

评价区果木林主要以脐橙、柑橘为主导,还包括桃、梨、李、枣、柿、杨梅等其他果木。

7) 农田植被

2020 年,赣州市粮食播种面积 509206.67 公顷。其中,谷物播种面积 468340 公顷,下降 0.3%。油料播种面积 40213.33 公顷,下降 1.1%。其中,油 菜籽 5786.67 公顷,下降 6.2%。蔬菜播种面积 134986.67 公顷,增长 2.3%。甘蔗播种面积 260 公顷,增长 3.6%。

全年粮食总产量 269.64 万吨。其中, 谷物产量 257.89 万吨。油料产量 10.41 万吨。其中, 油菜籽 0.69 万吨。蔬菜产量 368.32 万吨。甘蔗产量 1.13 万吨。烟叶产量 0.97 万吨,茶叶产量 0.52 万吨。

评价区水田和旱地以水稻为主,经济作物包括花生、瓜果、大豆、脐橙、茶树等。

经与林业局核实和现场调查,矿区范围没有国家重点保护野生植物分布。

1.1.1.2 植被解译

(1) 全南长城稀土矿区

评价区的植被包括林业植被、农业植被。林地主要分布在丘陵山地;农业植被主要分布在评价区的平地和低岗山地。

	植被类型分类		引八米		面积	比例
序号			2万尖	主要物种	hm2	%
1			阔叶混交林	枫香、木荷、青冈、檫木等	518.93	24.10
2		自然植被	针阔混交林	枫香、木荷、马尾松、杉木等	570.9	26.52
3			其他草地	木姜子、野漆树、山莓等	1.77	0.08
4				小计	1091.6	50.70
5	有		松树林	马尾松、湿地松、火炬松	76.36	3.55
	植被		杉木林	杉木	133.08	6.18
6	区		桉树林	桉树	90.14	4.19
8	域	人工植被	毛竹林	毛竹	30.69	1.43
9		八二组似	针叶混交林	毛竹、桉树、杉木、毛竹	280.42	13.02
10			果木林	脐橙、柑橘、梨、李、枣等	142.81	6.63
11			农业植被	水稻、花生、大豆等	154.27	7.17
12				小计	907.77	42.16
13		无植被区域			153.62	7.14
14			- /	计	2152.99	100

表 12-6 全南长城稀土矿区评价区植被类型统计

可以看出,评价区自然植被、人工植被及无植被区域占地面积分别为 1091.6hm²、907.77hm²、153.62hm²,占评价区总面积比例分别为 50.70%、42.16%、7.14%。由此可知,在评价区以自然植被为主。

(2) 全南玉坑稀土矿区

评价区的植被包括林业植被、农业植被。林地主要分布在丘陵山地;农业植被主要分布在评价区的平地和低岗山地。

⇒□	植被类型分类			之西州 和	面积	比例
序号		性 放尖3	2分尖	主要物种	hm2	%
1			阔叶混交林	枫香、木荷、青冈、檫木等	33.03	3.61
2		自然植被	针阔混交林	枫香、木荷、马尾松、杉木等	30.57	3.34
3	有		其他草地	木姜子、野漆树、山莓等	25.02	2.73
4	植			小计	88.62	9.68
5	被		松树林	马尾松、湿地松、火炬松	166.49	18.19
	X		杉木林	杉木	200.39	21.90
8	域	人工植被	毛竹林	毛竹	2.4	0.26
9			针叶混交林	毛竹、桉树、杉木、毛竹	134.46	14.69
10			果木林	脐橙、板栗等	66.4	7.26

表 12-7 全南玉坑稀土矿区评价区植被类型统计

11	农业植被	水稻、花生、大豆等	106	11.58
12		小计	676.14	73.88
13	无植	被区域	150.4	16.43
14	É	915.16	100.00	

可以看出,评价区自然植被、人工植被及无植被区域占地面积分别为88.62hm²、676.14hm²、150.4hm²,占评价区总面积比例分别为9.68%、73.88%、16.43%。由此可知,在评价区以人工植被为主。

1.1.1.3 生物量

植被的生物量是指一定地段面积内植物群落在某一时期生存着的活有机物质之重量,以 t/hm²表示。群落类型不同,其生物量测定的方法也有所不同。依据有关研究资料,植被生物量可按下式计算:

$$C_{\#} = \Sigma Q_{i} \times S_{i}$$

式中: C 提—生物量, t;

 Q_i —第 i 种植被生物生产量, kg/hm^2 ;

 S_{i} —占用第 i 种植被的土地面积, hm^2 。

本环评生物量(干重)主要利用现有资料推断。方精云、刘国华、徐嵩龄在《我国森林植被的生物量和净生产量》(生态学报,1996)中在国家第三次森林资源清查资料和全国各地的生物生产力研究资料的基础上,以蓄积量推算生物量。结合《江西省森林碳储量与碳密度研究》(王兵,魏文俊 江西科学,2009)、《杉木人工林生物量和生产力研究》(侯振宏、中国农学通报,2009)、《江西九连山常绿阔叶林资源研究》(堤利夫等,资源科学,2001)、《江西金盆山林区常绿阔叶林群落生物量研究》(邱凤英等,江西林业科技,2011)等文献资料中的实测或统计数据进行适当的修正,最终确定本环评中针叶林、松树林、杉木林平均生物量取值为 92t/hm²,阔叶林、桉树林、果木林、毛竹林平均生物量取值为 120t/hm²,针阔混交林平均生物量取值为 105t/hm²,草丛平均生物量取值为 5t/hm²。

农业植被生物量以粮食作物水稻的平均生物量进行估算。以水稻平均亩产计算籽实的平均生物量,籽实、桔杆与根茬生物量的比例记为 1:1:0.1。以赣州 2010 年水稻平均亩产 800kg/年计,则籽实生物量约为 12t/hm², 秸秆生物量约为 12t/hm², 根茬生物量约为 1.2t/hm², 即耕地总生物量约 25t/hm²。

(1) 长城稀土矿区

对长城稀土矿区评价区生物量进行估算,得到评价区生物量统计结果见**表** 12-8。

植被类型分类		平均生物量 t/hm²	占地面积 hm²	生物量 t	比例 %
	阔叶混交林	120	518.93	62271.60	30.71
自然植被	针阔混交林	105	570.90	59944.50	29.56
	其他草地	5	1.77	8.85	0.004
	松树林	92	76.36	7025.12	3.46
	杉木林	92	133.08	12243.36	6.04
	桉树林	120	90.14	10816.80	5.33
人工植被	毛竹林	120	30.69	3682.80	1.82
	针叶混交林	92	280.42	25798.64	12.72
	果木林	120	142.81	17137.20	8.45
	农业植被	25	154.27	3856.75	1.90
	小计		1999.37	202785.62	100

表 12-8 长城稀土矿区评价区范围内生物量统计

长城稀土矿区评价区范围内生物量总量约为 202785.62t,其中阔叶混交林、针阔混交林、针叶混交林、毛竹林、其他草地、松树林、桉树林、杉木林、果木林、农业植被生物量分别为 62271.60t、59944.50t、25798.64t、3682.80t、8.85t、7025.12t、10816.809t、12243.36t、17137.20t、3856.75t,分别占生物量的 30.71%、29.56%、12.72%、1.82%、0.004%、3.46%、5.33%、6.04%、8.45%、1.90%

(2) 玉坑稀土矿区

对玉坑稀土矿区评价区生物量进行估算,得到评价区生物量统计结果**表** 12-9。

植被类型分类		平均生物量 t/hm²	占地面积 hm²	生物量 t	比例 %
	阔叶混交林	120	33.03	3963.6	6.16
自然植被	针阔混交林	105	30.57	3209.85	4.99
	其他草地	5	25.02	125.1	0.19
	松树林	92	166.49	15317.08	23.81
	杉木林	92	200.39	18435.88	28.66
人工植被	毛竹林	120	2.4	288	0.45
八二组似	针叶混交林	92	134.46	12370.32	19.23
	果木林	120	66.4	7968	12.39
	农业植被	25	106	2650	4.12
	小计		915.16	64327.83	100.00

表 12-9 玉坑稀土矿区评价区范围内生物量统计

玉坑稀土矿区评价区范围内生物量总量约为 64327.83t, 其中阔叶混交林、

针阔混交林、针叶混交林、毛竹林、其他草地、松树林、杉木林、果木林、农业植被生物量分别为 3963.6t、3209.85t、125.1t、15317.08t、18435.88t、288t、12370.32t、7968t、2650t,分别占生物量的 36.16%、4.99%、0.19%、23.81%、28.66%、0.45%、19.23%、12.39%、4.12%。

12.1.5 动物资源情况

经环评现场实地调查、对当地居民的走访调查和查阅相关资料,项目矿区范围内动物多为常见动物物种,多为鸟类和啮齿类动物,野生动物物种主要有野兔、中华蟾蜍、灰喜鹊、乌鸦、喜鹊、田鼠、山麻雀、杜鹃、四声杜鹃、石鸡、鹌鹑、山斑鸠、黄雀、树麻雀等,未发现保护类动物的出没,未发现国家级或省级保护级别的动物的栖息繁殖地。

12.1.6 水土流失现状

评价区土壤侵蚀方式以水力侵蚀为主,水力侵蚀以面蚀为主,兼有大量的沟蚀,重力侵蚀主要是局部滑坡,多发生在堆(池)浸采场、尾砂场、原地浸矿采场。评价区现状平均土壤侵蚀模数 755t/km²·a。

(1) 长城稀土矿区

长城稀土矿区评价区土壤侵蚀数据见表 12-10。长城稀土矿区评价区强烈侵蚀面积为 12.66hm²,中度侵蚀面积为 297.08hm²,轻度侵蚀的面积为 1702.29hm²,微度侵蚀面积为 66.88hm²,无侵蚀区域面积为 74.08hm²,分别占评价区总面积的 0.59%、13.80%、79.07%、3.11%、3.44%。长城稀土矿区评价区侵蚀类型以轻度侵蚀为主,面积为 1702.29hm²,占 79.07%。

序号	水土侵蚀 类型	侵蚀面积 (hm²)	比例 (%)
1	强烈侵蚀	62.7	9.00
2	中度侵蚀	54.11	7.76
3	轻度侵蚀	488.02	70.03
4	微度侵蚀	5.01	0.72
5	无侵蚀区域	87.04	12.49
6	小计	696.88	100.00

表 12-10 长城稀土矿区评价区土壤侵蚀数据统计

(2) 玉坑稀土矿区

玉坑稀土矿区评价区土壤侵蚀数据见**表 12-11**。玉坑稀土矿区评价区强烈侵蚀面积为 148.68hm²,中度侵蚀面积为 14.87hm²,轻度侵蚀的面积为 5.18hm²,

微度侵蚀面积为 131.02hm², 无侵蚀区域面积为 615.35hm², 分别占评价区总面积的 16.25%、1.62%、0.57%、14.32%、67.24%。玉坑稀土矿区评价区侵蚀类型以无侵蚀区域为主,面积为 615.35hm², 占 67.24%。

序号	水土侵蚀	侵蚀面积	比例
厅 与	类型	(hm^2)	(%)
1	强烈侵蚀	148.68	16.25%
2	中度侵蚀	14.87	1.62%
3	轻度侵蚀	5.18	0.57%
4	微度侵蚀	131.02	14.32%
5	无侵蚀区域	615.35	67.24%
6	小计	915.16	100

表 12-11 玉坑稀土矿区评价区土壤侵蚀数据统计

12.2 生态环境影响评价

12.2.1 生态环境影响因素及途径

1.1.1.4 项目组成分析

本项目是稀土矿采选项目,工程主要由原地浸矿采场工程、富集站、环保工程和公辅工程组成。

1.1.1.5 项目建设对生态环境的影响因素和途径分析

项目占地情况详见表 12-12。

永久占地 临时占地 矿区名称 临时弃土 小计 原地浸矿 表土堆场 富集站 采场 场 长城 0.077 1.79 0.663 0.448 2.978 施工期 玉坑 2.56 1.868 0.64 0.226 5.294 小计 4.35 2.531 1.088 0.303 8.272 长城 0 2.414 0 2.156 0.258 运营期 玉坑 2.56 9.713 0.641 1.197 14.111 小计 2.56 11.869 0.641 1.455 16.525 合计 6.91 14.4 1.729 1.758 24.797

表 12-12 项目占地情况统计 单位: hm²

项目占地中,永久占地主要是富集站,永久占地面积 6.91hm²,占总占地面积的 27.86%。临时占地主要是原地浸矿采场、表土堆场、临时弃土场,共占用土地面积 17.887hm²,占总占地面积的 92.14%。由于原地浸矿采场的开采特点,原地浸矿采场对土地的破坏不是一次性形成,是逐年形成,且原地浸矿采场只破坏注液孔所在地林下的灌草植被,其余乔木等大部分植被不会被破坏。

同时,原地浸矿采场开展及时复垦工作,故原地浸矿采场每年有一定数量的土地被破坏,同时每年也会有一定数量的土地被恢复,最终服务期满后,大部分土地基本上都已经得到植被恢复。因此,从保护土地和地表植被的角度来说,原地浸矿采矿工艺对地表植被的破坏很小。

项目在施工期和运营期间不可避免地会对周围生态环境造成不同程度干扰和破坏。施工期和运营期对生态环境的影响因素和途径分析如下:

(1) 项目施工期生态环境影响的因素和途径

施工期主要为富集站、管线工程以及其它辅助设施的建设。

- ①富集站及辅助设施的建设将使被占用土地利用类型发生改变,草地、林地等转变为工矿用地。这些工程的建设会导致局部景观发生改变,地表植被的铲除或压占将会改变局部区域内的生态景观类型与格局;同时,区域植被覆盖面积的减少,引起生物量短期内减少;局部地表土壤产生扰动,短期内也会造成一定的水土流失。
- ②本项目表土堆存场、临时弃土场的建设可能破坏局部地表植被,相应地引起土壤侵蚀量的增加,剥离的表土堆放和开挖出的土方堆放也会压占地表植被,若堆放区边坡不采取防护措施,可能造成一定的水土流失。
 - (2) 项目运营期影响生态环境的因素和途径
- ①在运营期,原地浸矿采场按计划分矿体进行浸矿。每个矿体的生产时间不长且破坏程度不大,正常情况下约 1 年左右即完成一个矿体的开采工作,开采完的原地浸矿采场及时复垦,矿山处于不断建设新采场和不断复垦旧采场的过程中,同一时间矿体表面的植被破坏面积相比原地浸矿采场总破坏面积较小。
- ②矿山集液巷道建设产生的土方堆放在临时弃土场中。在土方堆积过程中,其土地利用类型也随之发生变化,原来的林地等转变为工矿用地。土方在堆放过程中,若堆放坡度较大且没有采取相应的水土保持措施,则会对下游生态环境产生影响。
- ③表土堆存场、临时弃土场的建设可能引起局部区域地表形态的改变,原本的汇水途径也因此受到影响。
 - ④管线工程的管道按各个矿体约 1 年的浸矿时间进行设计, 其中绝大部分

管线需要重复利用,采用易拆解的敷设方法。

(3) 项目服务期满后对生态环境的影响因素和途径

矿山生产结束后,直接的生态破坏活动将停止。但矿山开采对生态环境造成的破坏影响将持续,为了减轻这种影响,需要开展矿山的土地复垦工作,来逐步恢复矿区生态环境。

(4) 项目土地占用时序

根据可行性研究报告,富集站及其对应的表土堆场在第 1 年施工期内基本全部破坏;原地浸矿采场、临时弃土场、集液巷道、高位池等会随着工程的推进逐步破坏,逐步恢复。

12.2.2 浸矿剂硫酸镁的生态毒理特性

类比《赣州稀土矿业有限公司稀土矿山整合(一期)技改项目环境影响报告书》中的硫酸镁生态影响试验结果,见表 12-13。可以看出硫酸镁工艺浸矿对植被、土壤、水生生物、微生物的毒理学影响基本可以接受。

表 12-13 硫酸镁系列生态试验结论

ì	【验名称	试验方案	实验结论
实验室 植物发 芽率试 验 模拟浸矿液 对其发芽的 胁迫作用		数取颗粒饱满的狗尾草、黑麦草、高羊茅种子,每 100 粒为一组。设置 3%浸矿组,2%浸矿组,1%浸矿组和对照组,即配置质量比 1%、2%、3%的硫酸镁溶液,和 200ml 纯水对照	1%的硫酸镁溶液对植物发 芽影响较小,随着浓度的升 高,对植物发芽率胁迫作用 逐渐增强
实验室 植物试验	模拟浸矿液 对狗尾草的 生长、生理 的影响	取 20 个直径约 10cm 花盆,每个花盆装土 1.6kg。4 个花盆为一组,公分 5 组,分别编号为 0、1、2、3、4,对应空白组、0.1%、0.5%、1%、3%硫酸镁处理,每盆播种 100 粒狗尾草种	土壤含 1%以下硫酸镁对狗 尾草生长影响较小,含 3% 硫酸镁的土壤对狗尾草生长 抑制作用较大
斑马鱼	急性毒性试验	设 12 组,分别为 0.1g/L、1g/L、10.00 g/L、11.25 g/L、2.65 g/L、13.16 g/L、14.23 g/L、16.00 g/L、17.32 g/L、18.00 g/L、22.79 g/L、30 g/L 硫酸镁溶液,每组养8条斑马鱼进行硫酸镁急性毒性试验。	硫酸镁溶液 96h 对斑马鱼的 半致死浓度为 15.31g/L,硫 酸镁毒性较低
斑马鱼慢性毒性试验		设五组,分别为 0.1g/L、1g/L、 1.5g/L、2.5g/L、5g/L 硫酸镁溶 液,每组养 8 条斑马鱼进行硫酸 镁慢性毒性试验。	硫酸镁浓度低于 5000mg/L (即硫酸根小于 4000 mg/L,镁离子小于 1000 mg/L)时,斑马鱼在 2 个月 内未出现死亡情况。
现场	为对照试验	试验矿阳坡设3个1m×1m草本	受注液影响的矿山和周边未

样方,周边未受污染山体阳坡设3个1m×1m草本样方,监测优势群落五节芒叶绿素。同时监测表土土壤微生物(细菌、真菌)数量。

受影响的对照点植物生长情况、叶绿素含量基本相同、 土壤微生物数量处于同一数 量级

12.2.3 施工期生态环境影响分析

12.2.3.1 施工期对土地利用结构影响分析

本项目施工期为 1 年。从现状监测结果和遥感影像解译来看,施工期项目占地涉及林地等类型。工程施工占地范围内地貌、生态植被将遭到不同程度的开挖扰动、碾压、占压等形式的破坏,导致土地利用方式的转变。

评价范围内现有土地利用类型以林地等为主。林地主要以马尾松、杉木林等人工林为主要类型。

			占地类型(hm2)						
序号		项目		园地	林地	其他 草地	工矿 仓储 用地	其他 土地	小计
	心住	全南	长城	0	0	0	1.79	0	1.79
1	富集 站	王肖	玉坑	0	0	0	2.56	0	2.56
	71	小	计	0	0	0	4.35	0	4.35
	原地	全南	长城	0	0.663	0	0		0.663
2	浸矿	土用	玉坑	0.069	1.799	0	0	0	1.868
	采场	小	计	0.069	2.462	0	0	0	2.531
	≠ 1.	全南	长城	0	0.448	0	0	0	0.448
3	表土 堆场	土用	玉坑	0	0.64	0	0	0	0.64
	2年70	小	计	0	1.088	0	0	0	1.088
	临时	全南	长城	0	0.077	0	0	0	0.077
4	弃土	土用	玉坑	0	0.226	0	0	0	0.226
	场		计	0	0.303	0	0	0	0.303
合计		0.069	3.853	0	4.35	0	8.272		
	比	例		0.83	46.58	0.00	52.59	0.00	100.00

表 12-14 项目施工期占地情况

由可见,项目施工期项目共计占用土地面积 8.272hm²。占地类型主要为林地、工矿仓储用地,占地面积分别为 3.853hm² 和 4.35hm²,分别占总面积的 46.58%、52.59%。项目占地对评价范围内的土地利用类型有一定的影响,但是影响很小。

(1) 原地浸矿采场

在施工期, 首采矿块的原地浸矿采场内建设注液孔、收液巷道、输送管

线,并建设与矿体相应的收液池、高位池、避水沟和临时弃土场。施工结束后,施工期原地浸矿采场的破坏基本结束,不会再扩大;这些占地为临时占地,矿体采矿结束后可以进行复垦,对生态环境的影响有一定的缓解作用。输送管线采用 PVC 管,放置管线时不需要开挖地面,对植被的主要破坏来自人工布置管道时一些人为踩踏,对植被的破坏很小,对周边的生态环境影响也较小。

(2) 富集站

在施工期,富集站工程需要建设母液中转池、富集池、配液池、产品池等。富集站建设和各种池以及车间厂房,形成片状、点状的裸露面,所占用的土地均为永久性占地,转变为工矿用地。施工结束后,富集站的土地破坏基本结束,随着场地的绿化,生态环境得到一定程度的恢复。

(3) 表土堆存场和临时弃土场

在施工期,表土堆存场用于堆放剥离表土,形成片状的裸露面,所占用的土地为临时占地。从保护生态环境的角度出发,本项目表土堆存场尽量选择在富集站周围的未利用土地上,对周边生态环境的影响较小。表土堆存场在堆放表土前,堆场要修筑挡土墙和排水沟,以减轻表土堆存场的水土流失。在种植植被后,表土堆存场对周边生态环境影响较小。

建设集液巷道等工程会产生一定的土方量,这部分土方堆存于临时弃土场。在矿体的采矿结束后应立即进行复垦。

12.2.3.2 施工期对植被影响分析

在施工期,项目各工程建设对植被的破坏程度各不相同。

富集站、高位池等永久性占地工程完全压占破坏植被。表土堆存场和临时 弃土场等临时占地在施工期会临时压占破坏植被。

(1) 生物量损失计算

项目占地会破坏项目所在地及其周边地区的植被,带来生物量的损失。依据有关研究资料,工程占用土地造成的植被生物量损失可按下式计算:

$$C_{\text{H}} = \sum_{i} Q_{i} \bullet S_{i}$$

式中: $C_{\#}$ —生物量损失, t;

Qi—第 i 种植被生物生产量, t/hm^2 ;

S—占用第 i 种植被的土地面积, hm^2 。

施工期占地引起的生物量损失计算结果见表 12-15。

实际破坏植被面 平均生物量 损失量 序号 工程名称 植被类型 积(hm²) (t/hm^2) (t) 富集站 林地 0 120 原地浸矿采场 2 林地 120 295.44 2.462 (第1年) 3 表土堆场 林地 1.088 120 130.56 4 临时弃土场 林地 0.303 120 36.36 小计 3.853 462.36

表 12-15 项目施工期植被生物量损失估算

项目施工期破坏植被面积 3.853hm², 导致植被生物量损失为 462.36t。生态环境影响评价范围内生物量共约 218751.6t, 施工期破坏植被占其 0.21%。

(2) 对地表植被的影响分析

施工期占用土地造成生物量损失占生态环境影响评价范围内生物量的 0.21%,所占比例很小,拟建工程施工期建设对当地植被覆盖面积不会有明显不 利影响,植被生物量的减小可能加剧当地的土壤侵蚀过程。另外,施工期结束 后,富集站周边通过绿化,地表将被灌草所替代;临时弃土场也会及时复垦,撒播草籽。此时区域内植被和生态环境将会得到逐步改善,不会造成较大的水土流失现象。

12.2.3.3 农业影响分析

本项目施工期不占用耕地,对周边农作物产量影响很小。

12.2.3.4 景观影响分析

富集站等的建设对评价区内现有的景观生态类型进行切割,使区域内景观 破碎度增大。

施工期富集站对局部景观格局有一定的影响,但由于工矿景观分布相对集中,且面积较小,对于整体景观斑块的破碎度影响较小,对于一些自然景观内部功能的发挥阻碍作用较小,斑块之间继续保持着较高的连通性。

因此,项目建设不会对整体区域的景观生态格局与功能产生较大影响。

12.2.3.5 水土流失分析

在施工期,富集站等的建设将不可避免的破坏原来相对稳定的地表,产生

一定面积的裸露地面,引起一定程度的土壤侵蚀。

施工期水土流失从施工准备期开始至施工期结束,项目施工期的水土流失为水力侵蚀为主,必须采取一定的措施来减缓项目建设带来的生态环境影响。

12.2.4 运营期生态环境影响分析

在项目运营期中,矿山处于不断建设新采场和不断复垦旧采场的过程中, 即边破坏边恢复的过程。

12.2.4.1 土地利用结构影响分析

运营期主要是原地浸矿采场进一步占用土地,富集站和公辅设施等对土地的破坏范围不再进一步扩大。运营期,原地浸矿采场占地为临时性的挖损及压占。运营期占地情况见表 12-16。

	项目				占地类型	(hm2)			
序号			园地	林地	其他草 地	工矿仓 储用地	其他 土地	小计	
	宇住	全	长城	0	0	0	0	0	0
1	富集 站	南	玉坑	0	0	0	2.56	0	2.56
	ᄱ		小计	0	0	0	2.56	0	2.56
	原地	全	长城	0.142	2.014	0	0	0	2.156
2	浸矿	南	玉坑	0.612	9.101	0	0	0	9.713
	采场		小计	0.754	11.115	0	0	0	11.869
	表土	全	长城	0	0	0	0	0	0
3	推场 -	南	玉坑	0	0.641	0	0	0	0.641
	2年70		小计	0	0.641	0	0	0	0.641
	临时	全	长城	0	0.258	0	0	0	0.258
4	弃土	南	玉坑	0	1.197	0	0	0	1.197
	场		小计	0	1.455	0	0	0	1.455
	合计		0.754	13.211	0	2.56	0	16.525	
	-	北例		4.56%	79.95%	0.00%	15.49%	0.00%	100.00%

表 12-16 项目运营期占地情况

可见,项目运营项目共计占用土地面积 16.525hm²。占地类型主要为林地,占地面积为 13.211hm²,分别占总面积 79.95%。

原地浸矿采场主要是开挖注液孔破坏土地,主要破坏的是灌草植被,单个注液孔面积约为 0.025m²,按 2m×2m 的间隔布置注液孔,每公顷土地破坏植被面积约为 0.00625hm²。在原地浸矿完成后,及时对采场开展植被恢复工作,以使土地利用结构能得到一定程度的恢复。

在采取对原地浸矿采场及时复垦的措施情况下,运营期项目各年占地情况、详见表 12-17。全南玉坑稀土矿原地浸矿采场土地破坏示意图见图 12-1,全

南长城稀土矿原地浸矿采场土地破坏示意图见图 12-2。

每年采场实际破坏土地的面积远远小于占地总面积,通过采场复垦及时工作的开展,各年实际破坏植被面积相对较小。运营期占地为矿块开采临时占用林地等。逐年滚动开采各矿块,均为临时占用。各矿块开采时间约 1 年,第 2 年复垦。总体上,对原地浸矿采场采取边开采边复垦的措施情况下,矿山运营期原地浸矿采场的建设对土地利用结构影响较小。

左瓜		全南	J. YI.
年份	长城	玉坑	小计
第1年	2.978	5.294	8.272
第2年	0.275	1.529	1.804
第3年	0.119	0.664	0.783
第4年	0.238	2.524	2.762
第5年	0.262	1.089	1.351
第6年	0.244	0.861	1.105
第7年	0.337	0.704	1.041
第8年	0.202	2.566	2.768
第9年	0.142	1.176	1.318
第10年	0.306	1.675	1.981
第11年	0.22	0.575	0.795
第12年	0.069	0.085	0.154
第13年	/	0.192	0.192
第 14 年	/	0.085	0.085
第 15 年	/	0.133	0.133
第16年	/	0.109	0.109
第17年	/	0.085	0.085
第18年	/	0.059	0.059
小计	5.392	19.405	24.797

表 12-17 项目运营期占地面积一览表 单位: hm²

图 12-1 原地浸矿采场破坏时序示意图——全南长城

图 12-2 原地浸矿采场破坏时序示意图——全南玉坑

12.2.4.2 运营期对植被影响分析

原地浸矿采场分年开采,植被逐步破坏,环评要求运营期原地浸矿采场完成采矿计划后并完成清水清洗后,立即进行复垦工作,恢复地表植被,每年实际的生物损失量将得到一定程度的恢复。

此外,占地范围内多为本地区常见植物种类,没有濒危珍稀野生植物,不会造成濒危珍稀野生植物种群数量的锐减或灭绝。因此,工程对本区域的植物多样性不会产生显著影响。

运营期,随着项目的不断推进,原地浸矿场临时占地不断破坏所在地及其 周边地区植被,随之带来生物量损失。引起的生物量损失计算结果见表 12-18。

序号	工程名称	植被类型	实际破坏植被面积 (hm2)	平均生物量 (t/hm²)	损失量 (t)
1	原地浸矿采场	林地	11.115	120	1333.8
2	表土堆场	林地	0.641	120	76.92
3	临时弃土场	林地	1.455	120	174.6
4	小计		13.211	120	1585.32

表 12-18 项目运营期植被生物量损失估算

可见,运营期项目破坏总面积 1.004hm²,占地导致的植被生物量损失总为 120.48t。生态环境影响评价范围内生物量共约 160794.1t,施工期破坏植被占其 0.07%。原地浸矿采场分年开采,植被逐步破坏,环评要求运营期原地浸矿采场 完成采矿计划后并完成清水洗矿后,立即进行复垦工作,恢复地表植被,每年实际的生物损失量将得到一定程度的恢复。

12.2.4.3 运营期对农业影响分析

项目采用原地浸矿工艺,浸矿液为硫酸镁溶液,浸矿液硫酸镁渗漏进入地下水后,使地下水中镁、硫酸盐等增加。渗漏的浸矿液在包气带中在重力作用下,多数以重力水的形式下渗补给下部的基岩风化带饱水带——孔隙裂隙含水层,仅少量被包气带岩土所吸附而保持;渗液到达基岩风化带的孔隙裂隙含水层后,则以渗流的形式向水头较低的方向迳流,在山体坡脚地带则补给第四系松散岩类孔隙水,可能部分进入溪沟边的耕地,从而可能会对农作物产生一定的影响,当镁过多影响农作物对钙、钾离子的吸收;农作物生长中、后期,如果大量施入镁肥,会使农产品器官含糖量降低。

- (1)根据监测结果,矿区周边的农田土壤环境现状均能满足《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB15618-2018)。
- (2) 类比赣州稀土矿业有限公司龙南县离子型稀土无铵新工艺、定南县离子型稀土无铵新工艺两个试验矿的土壤监测结果,硫酸镁工艺对土壤的影响可接受,不会对农作物造成较大影响。

12.2.4.4 运营期对景观格局的影响分析

运营期主要是原地浸矿采场及设施对评价区内现有的景观生态类型造成影响,原地浸矿采场在建设时只是需要在地表进行打孔作业,布设管道。各注液孔间隔较大,在打孔作业时避开树木;管道可拆除,基本不破坏地表植被,因

此原地浸矿采场作业基本上不改变原有的景观类型,并且对原有景观类型影响较小。原地浸矿采场采矿结束后进行复垦工作恢复为原有景观类型;在运营期中,部分原地浸矿采场是处在采矿期,部分是处在复垦期,在同一时间的破坏面积实际上远远小于原地浸矿采场总面积,因此原地浸矿采场对景观格局影响较小。

集液巷道等的开挖土方临时堆放在采场附近,形成一定的小土堆,会对景观造成一定的影响,但是土方量比较小,临时弃土场形成后及时复垦,因此临时弃土场对景观格局的影响不大。

鉴于原地浸矿开采工艺仅局部破坏地表植被,且主要破坏灌草地。从宏观上看,本项目工矿景观的加入对整个评价区现有景观格局影响较小,各景观内部景观要素的组成稳定。从局部景观构造上看,对于整体景观斑块的破碎度影响不是很大,对于一些自然景观内部功能的发挥阻碍作用较小,斑块之间继续保持着较高的连通性。

因此,本项目的运营期不会对项目所在地整体区域的景观生态格局与功能产生较大影响。

12.2.4.5 运营期对水土流失的影响分析

在运营期,引起水土流失的场地主要为临时弃土场、原地浸矿采场注液孔周边,如不采取相关的水土保持措施,则会引起相应的水土流失。

原地浸矿采场浸矿作业时间约 6 个月,浸矿结束后再注清水约 3 个月之后即回填复垦;在整个运营期,同时在作业的原地浸矿采场只有几个,其它的原地浸矿采场或未启用、或已进行复垦工作。因此,运营期产生较大水土流失的原地浸矿采场为正在注液的采场,面积相对较小。

运营期对原地浸矿采场应采取必要的水土流失措施,防治水土流失。运营 期在认真落实水土保持措施,可以减轻工程生产造成的水土流失。

12.2.5 服务期满后生态环境影响分析

矿山服务期满后,原地浸矿采场将不再开采,富集站和辅助工程也停止使用,对于地表的扰动也随之结束,不再产生新的不利影响。

在矿山开发中,采用了边破坏边复垦的方法,在矿山服务期满后大部分原 地浸矿采场、收液沟、临时弃土场已经完成了复垦,剩下的还没有进行恢复的

工程主要为部分最后开采的原地浸矿采场、部分临时弃土场和富集站,在服务期满后需要做好这部分工程的复垦工作。

服务期满后主要开展土地复垦工作,不会对生态环境造成新的不利影响。

12.2.6 项目开发对野生动植物的影响

(1) 对野生植物的影响分析

施工期新建富集站永久占地占用的林地主要有马尾松和杉木等物种。地表的植被将被破坏,但是破坏的植物均为当地常见物种,而且数量不多。运营期对植物的破坏主要是因为原地浸矿采场进一步占用土地,破坏林下灌草。同时,原地浸矿采场及时开展复垦、恢复植被。占地范围内多为本地区常见植物种类,没有生态敏感种类,没有濒危珍稀野生植物,不会造成濒危珍稀野生植物种群数量的锐减或灭绝。因此,本工程对区域的植物多样性不会产生显著影响。

(2) 对野生动物的影响分析

陆生动物。施工期对动物的直接影响主要是施工人员集中活动和工程施工过程对动物的惊扰;间接影响主要是项目对植被和土壤的破坏。根据现场调查,矿区的建设破坏地表植被,缩小了野生动物的栖息空间,对其生存与繁衍产生有一定的不利影响。随着施工期的结束,对野生动物的扰动也会结束,但是野生动物栖息地的环境被破坏,栖息地的减少对动物影响并非伤害性的,对栖息环境的干扰将导致动物迁移出该区域,会对野生动物产生一定的影响,但是影响不大。

水生生物。水量方面;各车间就近取水,水流流速减缓,河段内水文情势改变,喜欢急流水条件的水生生物及鱼类种群将会减少,喜欢缓流水条件的水生生物及鱼类种群将会增多。水质方面;项目运营期,正常生产情况下,生产废水不外排,不会对河流的水生生物造成明显不利影响;非正常情况下的硫酸镁排放和原地浸矿采场渗漏母液,会对水生生物产生一定影响。但根据实地调查,流域中水生生物种类较小,种群数量低,无特殊保护鱼类,均为常见种,因此,对评价区水生生物及鱼类的多样性影响较小。

12.3 生态环境恢复措施

项目生态恢复内容主要是指原地浸矿采场和富集站的植被恢复。由于原地

浸矿工艺仅破坏地表局部灌草植被,且各矿体的原地浸矿采场服务年限一般 1年,因此原地浸矿采场的植被恢复原则上以自然恢复为主,在自然恢复不好的情况下,及时开展人工植被恢复,栽植灌草以恢复、改善生态。富集站以人工恢复为主。

12.3.1 生态拟恢复面积

项目工程最终生态恢复面积 24.797hm², 见**表 12-19**, 其中富集站 6.91hm², 原地浸矿采场 14.4hm², 表土堆场 1.729hm², 临时弃土场 1.758hm²。

矿	X	富集站	原地浸矿 采场	表土堆存 场	临时弃土 场	小计
全南	玉坑	1.79	2.819	0.448	0.335	5.392
生 角	长城	5.12	11.581	1.281	1.423	19.405
小	计	6.91	14.4	1.729	1.758	24.797

表 12-19 项目生态恢复面积统计 单位: hm²

12.3.2 复垦方向

根据原地浸矿的开采工艺,各工程场地所在位置集中分散程度,可分为原地浸矿采场施工区和富集站施工区。

其中原地浸矿采场施工区包括:原地浸矿采场(注液孔、避水沟、排水 沟、集液沟、高位池、母液收集池)、临时弃土场、表土堆场等。

原地浸矿生态恢复方向表 12-20。

复垦	对象	复垦措施			
原地浸	矿采场	林地	自然恢复为主,注液孔回填,布局补栽灌 木、撒播草籽		
母液虫	女集池	蓄水池	无		
富身	 基站	林地	间栽乔灌木、混播草籽		
临时弃土场、 堆存期		草地	混播草籽		
表土堆场	取走后场地	林地	间栽乔灌木、混播草籽		

表 12-20 原地浸矿生态恢复方向

评价区降雨量较大,自然恢复较快,因此原地浸矿采场参照原土地利用类型,以自然恢复为主,注液孔回填,局部地区补栽灌木,林下撒播草籽。车间最终复垦为林地,表土堆存场和临时弃土场堆存期临时恢复为草地,最终弃土取走后复垦为林地。

12.3.3 废弃地恢复措施

本项目生态恢复措施充分借鉴矿山现有废弃地的恢复经验制定。

(1) 生态环境恢复管理措施

注液孔施工。在保护树木的原则下,尽量按照设计施工,遇到树木则进行合理的避让;产生的岩土装袋堆放在附近,在浸矿完成后立即回填、复垦。

表土堆存场、临时弃土场。堆存期间,应设置挡土墙、截排水沟等,并撒播草籽复垦;废弃地形成后及时覆土复垦。

做好生产期矿区的监督和管理工作,尽量避免在矿山生产中植被破坏,杜绝随意乱挖乱砍的行为。

(2) 生态环境恢复规划

复垦对象为注液孔、富集站、表土堆存场、临时弃土场等,按照"因地制宜、及时复垦"的思路,对各个区域设置不同的生态恢复规划,实施边开采、边复垦治理的计划。根据开采时序和开采的工艺可知,每个开采矿段用原地浸矿工艺的生产周期为1年左右,则复垦时间依据矿块开采时序顺延1年,即第1年开采矿块(原地浸矿采场施工区)在第2年完成生态恢复,在服务期满之后第2年左右进行的生态恢复。使开采过程中形成的废弃地及时得到恢复,最终实现稀土矿山开发对生态环境影响最小化。

原地浸矿采场:复垦时先将前期建设注液孔堆存在附近的岩土进行有序回填,并将表土覆盖在表面,然后以自然恢复为主,局部地区注液孔为穴进行补栽小灌木,撒草籽复垦。复垦时间为原地浸矿采场浸矿完成后1年内。

临时弃土场(表土堆存场): 在表土堆存场和临时弃土场除采取拦挡措施防止水土流失外,可以进行撒播草籽,复垦为草地,主要作用是为了防沙和水土流失; 当表土取走后进行全面松土整地,复垦为林地。

富集站: 富集站主要是在施工期期间发生植被破坏的,在矿山服务期满之后形成永久废弃地。车间除留少量作灌溉水池外,绝大部分水池拆除,并进行覆土回填,回填后复垦为林地。

(3) 植被恢复物种选择

评价区土壤呈一定酸性,因此所选植物种需具有较强的耐酸性和改良土壤的特征;要求所选物种萌发快、快速复绿效果好、生物量大,能有效防治水土流失;播种栽培较容易,成活率高;优先选择乡土物种,防止外来物种入侵。

根据上述物种选择原则,结合当地的气象气候条件,以及《造林技术规

程》(GB/T15776-2016)(附录 C)、《生态公益林技术规程》(GB/T 18337.3-2001),乔木为马尾松、湿地松、杉木,灌木主要为胡枝子、紫穗槐、马棘;草种主要以禾本科草类为主,目的是利用禾本科植物萌发成坪迅速,水土保持效果好,主要选择狗牙根、百喜草、三叶草等。生态恢复单元物种适宜性见表12-21。

表 12-21 林地所选物种适宜性

类型	物种	主要生物学特性	主要适生地区	适宜立地条件
	马尾 松	常绿乔木,喜光,深根性,根系发达,略耐瘠薄和干旱,喜温湿,不耐水湿和盐碱,不耐弱光照	温带南部、暖温带地区,年平均温度 5~ 16℃,年降水量 500~ 1000mm,海拔 1600m 以下山地、丘陵、平原	其耐酸 pH 范围在 3.5-5.5,平原地区 要求排水良好的壤 土、沙壤土
乔木	湿地 松	适生于低山丘陵台地等低 海拔地带,耐旱、耐瘠薄	适生于亚热带气候地区	气温适应性较强, 在中性以至强酸性 红壤均生长良好
	杉木	山地生长,较喜光喜温暖湿润,多雾静风的气候环境,不耐严寒及湿热,怕风,怕旱	长江下游各地边坡、丘 陵均可生长	适合酸性土壤,在 深厚肥沃、排水良 好的沙壤土生长最 好,对立地条件有 较强的适应能力
	胡枝 子	落叶灌木,喜光,也耐 荫,根系发达,耐寒,耐 干旱气候,耐土质瘠薄, 萌生力强,生长较快	温带至亚热带常见灌木,适生于东北、华北、西北及长江流域地区,常生于海拔 500m以上的山坡林缘或林下	对立地条件要求不 严,在沙石地、石 质山地,土质瘠 薄、山地、丘陵水 土流失严重地带及 流动沙地均能良好 生长
灌木	紫穗槐	喜光、耐旱、耐湿、耐盐 碱、抗逆性极强的灌木, 在荒山坡、道路旁、河 岸、盐碱地均可生长,萌 芽性强,根系发达。	广布于中国华东、湖 北、四川等省(区), 是黄河和长江流域很好 的水土保持植物。在我 国南方各省均有栽植	对立地条件要求不 严,土质瘠薄、山 地均能良好生长
	马棘	落叶灌木,喜强光,深根性,根系发达,耐热,耐贫瘠,耐干旱,萌生力强	温带至亚热带常见灌 木,适生于华南、及长 江流域地区	对立地条件要求不 严, 土质瘠薄、山 地、丘陵水土流失 严重地带及流动沙 地均能良好生长
	狗牙 根	禾本科草本植物,侵占性 和抗杂草入侵能力很强。 耐旱,喜温暖湿润。	广泛分布于华东、华南	对土壤要求不高, 适宜的土壤酸碱性 范围很广
草本	百喜草	多年生草本,耐寒性、耐 暑性、耐踏性极强。	适于热带和亚热带地 区,广东、广西、海 南、福建、四川等南方 大部分地区。	对土壤要求不高, 可以适应在肥力较 低、干旱的沙质土 壤。
	三叶	多年生豆科直立型草本,	各地均有生长	对土壤要求不高,

草	喜光,喜中性钙质土壤		与禾本科混播
巴茅草	禾本科,多年生,耐旱、 耐盐直立型草本,喜光、 耐热、生长力强	分布于南方大部分省区	对土壤要求不严 格,耐旱、耐贫瘠
牛筋 草	禾本科,多年生直立型草 本,耐旱、生长力强	在我国华南、西南均可 种植	对土壤要求不严 格,耐旱、耐贫瘠

(5) 植被栽植设计

①堆存期植被栽植设计

表土堆存场和临时弃土场堆存期采用撒草籽恢复。草种选用狗牙根、百喜草,草本采用撒播方式恢复。栽植设计见表12-22。

②废弃地植被栽植设计

当表土和岩土取走后进行,临时弃土场,乔木栽植采用穴状栽植;株行距按注液孔间距约 2m×2m。林下撒草籽进行恢复。富集站废弃地形成后,其植被栽植设计乔木栽植采用穴状栽植;株行距按注液孔间距约 2m×2m。林下撒草籽进行恢复。

③原地浸矿采场植被栽植设计

原地浸矿采场注液孔回填, 栽植灌木, 草本采用撒播。

物种类别 物种名称 栽培方式 苗木规格 栽植密度 栽植、穴植 2年生 乔木 马尾松、湿地松、杉木 1250 株/hm2 胡枝子、紫穗槐、马棘 1250 株/hm2 灌木 栽植、穴植 2年生 狗牙根、百喜草、三叶 草本 一级草种 撒播 30kg/hm2 草等

表 12-22 植被栽植方式设计

(6) 生态恢复措施及恢复单价

生态恢复措施及恢复单价见表 12-23。

表 12-23 生态恢复措施及恢复单价

类型	单价	主要措施
原地浸矿采场	0.1 万元/亩	注液孔回填,自然恢复为主,布局补栽灌 木、撒播草籽
车间	1万元/亩	车间拆除,土地平整,乔灌草恢复
表土堆存场、临时弃土场	0.35 万元/亩	堆存期间撒草籽保护; 取走后,土地平整,乔灌草恢复
道路	/	保留

12.3.4 生态公益林保护措施

本项目矿区范围内不涉及生态公益林

12.3.5 生态恢复计划安排

12.3.5.1 富集站

本项目富集站在矿山服务期满后进行生态恢复;道路保留不进行生态恢复,各富集站生态恢复计划安排见表 12-24。

富集站名 复垦面积 序号 采矿证名称 占地年份 复垦年份 称 (hm2) 富集站一 0.88 34 1 14 长城 35 富集站二 0.91 4 1 富集站一 1.27 5 36 1 全南 37 富集站二 1 1.29 12 玉坑 富集站三 9 38 4 1.30 39 8 1.26 富集站四 20

表 12-24 富集站生态恢复计划

12.3.5.2 原地浸矿采场

按照矿区和年度分别制定了原地浸矿采场生态恢复时序,采场周边临时弃土场(表土堆存场)同采场一同恢复,具体见表 12-25。

恢复年份		全南	
	长城	玉坑	小计
1	/	/	/
2	/	/	/
3	1.188	2.734	3.922
4	0.275	1.529	1.804
5	0.119	0.664	0.783
6	0.238	1.224	1.462
7	0.262	1.089	1.351
8	0.244	0.861	1.105
9	0.337	0.704	1.041
10	0.202	1.306	1.508
11	0.142	1.176	1.318
12	0.306	1.675	1.981
13	0.22	0.575	0.795
14	0.069	0.085	0.154
15	/	0.192	0.192
16	/	0.085	0.085
17	/	0.133	0.133
18	/	0.109	0.109
19	/	0.085	0.085
20	/	0.059	0.059

表 12-25 各矿区原地浸矿采场恢复时序表

12.3.6 生态恢复投资估算及复垦计划安排

项目生态恢复面积 2.699hm², 总投资为 21.83 万元, 具体生态恢复投资估

算见表 12-26。

表 12-26 项目生态恢复投资估算

组成	复垦面积(hm²)	单价(万元/亩)	费用(万元)
富集站	6.91	1	6.91
原地浸矿采场	14.4	0.1	1.44
临时弃土场	1.729	0.35	0.60515
表土堆场	1.758	0.35	0.6153
合计	24.797	/	9.57045

13 环境风险影响分析

13.1 风险识别

13.1.1 物质危险性识别

《建设项目环境风险评价技术导则》(HJ169-2018) 附录 B,对拟建项目主要原辅材料、燃料、中间产品、副产品、最终产品、污染物、火灾和爆炸伴生/次生物进行识别,本项目涉及物质包括硫酸镁、氧化镁、浓硫酸、石灰、稀土富集物等,属于 HJ 169-2018 附录 B 重点关注的危险物物质为浓硫酸。

每个车间硫酸储量约为 9t。危险物质数量和分布情况见**表 13.1**。危险特性见表 13.2。

危险物质	形	储存位置			储缸	诸罐操作参 CA		CAS 号	最	临	防护措	
名称	态					数			大	界	施	
		位	设备	大小	数	压	温	包		存	量	
		置	类型	(m^3)	量	力	度	容		在	/t	
								性		总		
										量		
										/t		
硫酸	液	硫	储罐	10	48	常	常	单	7664-93-9	9	10	四周设
(70%)	态	酸	(充			压	温	包				围堰,
		储	装系					容				地面防
		罐	数									腐、防
		X	0.8)									渗。

表 13.1 危险物质数量和分布情况表

表 13.2 硫酸理化性质和危险特性

	中文名称:硫酸	英文名称: sulfuric a	ncid	CAS号: 7664-	
#	1 70 11 130 70010) C) C II II V Sulfario (93-9	
基本	分子式:H ₂ SO ₄	分子量: 98.08	危规	1号: 81007	
本信息	UN 编号: 1830	危险性类别:第8.1类酸性 腐蚀品	IMDG 规则页码: 8225		
心		含量:工业级 92.5%或 98	3%		
	外观	与性状: 纯品为无色透明油状	液体,无臭		
	溶解性: 与水混溶	熔点(°C): 10.5	沸点	(°C): 330.0	
理	相对密度(水=1): 1.83	相对蒸气密度(空气=1):	饱和蒸气压(kPa):		
化	/[[//] 出/文(/八一1): 1.03	3.4	0.13	3(145.8°C)	
特	主要用途:用于生产化学	肥料,在化工、医药、塑料、	染料、石油	提炼等工业也有广	
性	泛的应用				
	禁配物:碱类、碱金属、	水、强还原剂、易燃或可燃物	IJ		
危	遇水大量放热, 可发生沸	溅。与易燃物(如苯)和可烷	然物(如糖、	纤维素等)接触会	
险	发生剧烈反应, 甚至引起	足燃烧。遇电石、高氯酸盐、硒	肖酸盐、苦味	酸盐、金属粉末等	
特	猛烈反应,发生爆炸或燃	烧。有强烈的腐蚀性和吸水性			
性	有害燃烧产物:氧化硫				

灭火方法:消防人员必须穿全身耐酸碱消防服。灭火剂:干粉、二氧化碳、砂土。避免水流冲击物品,以免遇水会放出大量热量发生喷溅而灼伤皮肤

健康危害:对皮肤、粘膜等组织有强烈的刺激和腐蚀作用。蒸气或雾可引起结膜炎、结膜水肿、角膜混浊,以致失明;引起呼吸道刺激,重者发生呼吸困难和肺水肿;高浓度引起喉痉挛或声门水肿而窒息死亡。口服后引起消化道烧伤以致溃疡形成;严重者可能有胃穿孔、腹膜炎、肾损害、休克等。皮肤灼伤轻者出现红斑、重者形成溃疡,愈后癍痕收缩影响功能。溅入眼内可造成灼伤,甚至角膜穿孔、全眼炎以至失明。慢性影响:牙齿酸蚀症、慢性支气管炎、肺气肿和肺硬化

环境危害:对环境有危害,对水体和土壤可造成污染燃爆危险:本品助燃,具强腐蚀性、强刺激性,可致人体灼伤皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗至少15分钟。就医

眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少 15 分钟。就医吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医食入:用水漱口,给饮牛奶或蛋清。就医

漏应急处理

与

防

迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿防酸碱工作服。不要直接接触泄漏物。尽可能切断泄漏源。防止流入下水道、排洪沟等限制性空间。小量泄漏:用砂土、干燥石灰或苏打灰混合。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。用泵转移至槽车或专用收集器内,回收或运至废物处理场所处置

包装方法:耐酸坛或陶瓷瓶外普通木箱或半花格木箱;磨砂口玻璃瓶或螺纹口玻璃瓶外普通木箱

运输注意事项:本品铁路运输时限使用钢制企业自备罐车装运,装运前需报有关职能 人员批准。铁路非罐装运输时应严格按照铁道部《危险货物运输规则》中的危险货物 配装表进行配装。起运时包装要完整,装载应稳妥。运输过程中要确保容器不泄漏、不倒塌、不坠落、不损坏。严禁与易燃物或可燃物、还原剂、碱类、碱金属、食用化 学品等混装混运。运输时运输车辆应配备泄漏应急处理设备。运输途中应防曝晒、雨淋,防高温。公路运输时要按规定路线行驶,勿在居民区和人口稠密区停留

13.1.2 生产系统危险性识别

(1) 生产装置

矿山生产过程中,富集站生产池体和母液输送管线存在泄漏危险,硫酸储罐存在泄漏危险。

(2)运输风险

贮运风险主要包括运输途中以及厂区内储罐泄漏或者遗撒两个环节。

运输过程: 拟建工程生产过程中使用的原辅材料以及产品等有易燃易爆、腐蚀性强的物质,特别是硫酸,全部外购,委托专业运输机构采用密封罐车从硫酸生产企业运输硫酸,并督促运输单位遵守《危险化学品安全管理条例》、《道路危险货物运输管理规定》等有关危险货物运输管理的规定,避免运输过程的环境污染风险。

厂区储存:厂区储罐及管道泄漏主要发生在阀门失效、管口连接处等。一 旦发生泄漏,会对罐区及管道周围环境造成危害。

13.1.3 风险识别结果

根据危险物质和生产系统危险性识别,识别出建设项目风险源为硫酸储罐 泄漏。风险识别表见表 13.3。

危险单元	风险源	主要危 险物质	Q	环境风 险类别	环境影 响途径	可能受影响的环 境敏感目标	备注
酸库房	硫酸储罐	硫酸	0.9	泄漏	地表水	厂区工作人员	重点风 险源

表 13.3 建设项目环境风险识别汇总

13.2 环境风险事故情形分析及预测

13.2.1 事故性泄漏风险对地表水影响分析

本项目母液处理车间正常情况下不会出现池体泄漏情况,考虑到事故情况下,池体和运输管线可能发生泄漏,母液泄漏而首先污染地下水,进而发生地表水的次生污染。事故情况下,主要考虑富集站池体和母液收集池池至富集站池体运输管线泄漏,事故情况下,污染物的浓度均相同,不同的为排放量,最大的为富集站池体事故泄漏。

预测条件:按母液渗漏量集中排放至地表水体考虑。预测时不考虑镁降解作用,按混合模式计算。

预测因子: 预测原地浸矿特征污染物镁、硫酸盐。

混合过程段的长度计算公式:

$$\frac{(0.4B-0.6a)Bu}{(0.4B-0.665B)(a110^{1/2})}$$

混合过程段的长度 L= $\overline{(0.058H + 0.0065B)(gHI)^{1/2}}$

式中: L---混合过程段长度, m;

B——河流宽度, m;

a——排放口距离岸边位置(岸边排放时为零), m:

u——河流断面平均流速, m/s;

H——平均水深, m;

g——重力加速度, 9.81m/s²;

I——河流纵降比,%。

完全混合断面污染物的浓度 C 的计算公式:

$$C = \frac{C_h Q_h + C_p Q_p}{Q_h + Q_p}$$

式中: C——河流水中某污染物浓度, mg/L;

Qp——废水排放量, m³/s;

Cp——污染源排放浓度, mg/L;

Qh——河流流量, m³/s;

Ch——河流上游污染物浓度, mg/L。

河流简化:根据调查,预测涉及到的河流均可简化为平直河流。

13.2.1.1 源强分析

母液处理车间正常情况下不会出现池体泄漏情况,考虑到事故情况下,池体可能发生泄漏,母液泄漏而首先污染地下水,进而发生地表水的次生污染。

(1) 母液处理车间池体泄漏量

池体泄漏量按单个最大池容的 50%考虑,池体泄漏控制时间按 1 个班考虑,泄漏时间为 8 小时,全部进入地表水。根据各车间所属流域及池体容积情况,得出各流域池体泄漏量,详见表 13.4。

(2) 母液处理车间池体泄漏源强

经分析生产期母液浓度最大,选取该阶段进行水环境影响预测分析,母液浓度选取生产期源强,主要分析池体发生泄漏后母液对周围地表水体的环境影响。母液处理车间池体泄漏污染源强见表 13.5。

表 13.4 项目富集站池体设置情况一览表

区县 矿区 富集站	宣 佳 計 夕	宇		沉淀富集池		配液池		稀土产品池		母液中转池		美浆液池	硫酸池		
	日	所属流域	数量/	容积	数量/	容积	数量/	容积	数量/	容积	数量/	容积	数量/	容积	
		7/21		个	m^3	个	$/\mathrm{m}^3$	个	$/\mathrm{m}^3$	个	$/\mathrm{m}^3$	个	$/\mathrm{m}^3$	个	$/\mathrm{m}^3$
44.7	长城	富集站一	老屋溪小流域	2	400	2	250	1	150	1	300	1	10	1	10
	飞坝	富集站二	老屋溪小流域	2	400	2	250	1	150	1	300	1	10	1	10
全南县		富集站一	井水河小流域	3	500	2	300	1	200	1	300	1	20	1	20
土用云		富集站二	上辽河小流域	3	500	2	300	1	200	1	300	1	20	1	20
玉坑	エジル	富集站三	上辽河小流域	3	500	2	300	1	200	1	300	1	20	1	20
		富集站四	井水河小流域	3	500	2	300	1	200	1	300	1	20	1	20

表 13.5 各流域池体泄漏源强一览表

区县		小流域单个池	小流域单个池体	泄漏速	泄漏浓	度(mg/L)
	1	体最大容积 m³	泄漏量 m³	度 m³/h	镁	硫酸根
	老屋溪小流域(长城富集站一、富集站二)	400	200	25	964	8050
全南县	井水河小流域(玉坑富集站一、富集站四)	500	250	31.25	964	8050
	上辽河小流域(玉坑富集站二、富集站三)	500	250	31.25	964	8050

13.2.1.2 母液池体泄漏对地表水环境影响分析

①车间母液池体泄漏对老屋溪的环境影响分析

影响预测见表 13.6,由表可知,车间母液池体泄漏,老屋溪完全混合断面的各预测因子可满足《地表水环境质量标准》(GB 3838-2002)中的III类标准限值。

	排放参数			老屋沒	老屋溪完	
预测因子	车间 数量 (个)	车间泄漏 量(m³/h)	排放浓度 (mg/L)	流量 (m³/s)	本底浓度 (mg/L)	全混合浓度(mg/L)
镁	1	25	964	0.3	9.08	30.68
硫酸盐	1	25	8050	0.3	125	304.3

表 13.6 母液池体泄漏对老屋溪小流域影响预测

影响预测见表 13.7,由表可知,车间母液池体泄漏,井水河完全混合断面各预测因子可满足《地表水环境质量标准》(GB3838-2002)中III类标准限值。

		排放参数		井水河	井水河完	
预测因子	车间 数量 (个)	车间泄漏 量(m³/h)	排放浓度 (mg/L)	流量 (m³/s)	本底浓度 (mg/L)	全混合浓度(mg/L)
镁	1	31.25	964	0.58	6.14	20.26
硫酸盐	1	31.25	8050	0.58	21.2	139.59

表 13.7 母液池体泄漏对井水河小流域影响预测

③车间母液池体泄漏对上辽河的环境影响分析

影响预测见表 13.8,由表可知,车间母液池体泄漏,上辽河完全混合断面的预测因子硫酸盐不满足《地表水环境质量标准》(GB 3838-2002)中的III类标准限值。

	排放参数			上辽河	上辽河完	
预测因子	车间 数量 (个)	车间泄漏 量(m³/h)	排放浓度 (mg/L)	流量 (m³/s)	本底浓度 (mg/L)	全混合浓 度(mg/L)
镁	1	31.25	964	0.22	27.1	62.66
硫酸盐	1	31.25	8050	0.22	5.54	310.9

表 13.8 母液池体泄漏对上辽河小流域影响预测

泄露后,包括全南县上辽河完全混合断面的硫酸盐,不满足《地表水环境质量标准》(GB 3838-2002)中的III类标准限值。因此应杜绝此类风险事故发生。一旦发生,评价建议发生泄露后及时将母液转移至事故应急池等应急处置措

②车间母液池体泄漏对井水河的环境影响分析

施,不能及时控制发生污染物向下游迁移情况是建议在尾水收集处理站添加除污药剂。短期内该河段污染物浓度将逐渐降低,恢复至达标,在此期间要严格控制,禁止当地居民在泄漏点下游河段取水灌溉。由于这种情形是突发的、短暂的,不会对产生明显不利影响。

13.2.1.3 管道泄漏对地表水体的影响

项目整个评价周期分为生产期、淋洗期、闭矿期共三种情景,经分析生产期母液浓度最大,选取该阶段进行水环境影响预测分析,母液浓度选取试验评估项目最大值。

①管道泄漏对老屋溪的环境影响分析

影响预测见表 13.9,由表可知,管道泄漏,老屋溪完全混合断面的预测因子硫酸盐和镉不满足《地表水环境质量标准》(GB 3838-2002)中的III类标准限值。

	排放	参数	河流参数		完全混合浓
预测因子	母液管线泄 漏量(m³/h)	排放浓度 (mg/L)	流量 (m³/s)	本底浓度 (mg/L)	度(mg/L)
镁	116.17	964	0.3	9.08	101.8202
硫酸盐	116.17	8050	0.3	125	894.6625

表 13.9 管道泄漏对老屋溪影响预测

影响预测见表 13.10,由表可知,管道泄漏,井水河完全混合断面的预测因子硫酸盐不满足《地表水环境质量标准》(GB 3838-2002)中的III类标准限值。

	排放	参数	河流参数		完全混合浓	
预测因子	母液管线泄 漏量(m³/h)	排放浓度 (mg/L)	流量 (m³/s)	本底浓度 (mg/L)	度(mg/L)	
镁	145.21	964	0.58	6.14	68.4229	
硫酸盐	145.21	8050	0.58	21.2	543.2566	

表 13.10 管道泄漏对井水河影响预测

③管道泄漏对上辽河的环境影响分析

影响预测见表 13.11,由表可知,管道泄漏,上辽河完全混合断面的预测因子硫酸盐不满足《地表水环境质量标准》(GB 3838-2002)中的III类标准限值。

表 13.11 管道泄漏对上辽河影响预测

	排放参数		河流	完全混合浓	
预测因子	母液管线泄	排放浓度	流量	本底浓度	度(mg/L)
	漏量(m³/h)	(mg/L)	(m^3/s)	(mg/L)	/文(IIIg/L)

②管道泄漏对井水河的环境影响分析

镁	145.21	964	0.22	27.1	172.262
硫酸盐	145.21	8050	0.22	5.54	1251.937

管线泄漏后,包括绝大部分流域不满足《地表水环境质量标准》(GB 3838-2002)中的III类标准限值。因此应杜绝此类风险事故发生。一旦发生,评价建议发生泄漏后及时将母液转移至事故应急池等应急处置措施,不能及时控制发生污染物向下游迁移情况是建议在尾水收集处理站添加除污药剂。短期内该河段污染物浓度将逐渐降低,恢复至达标,在此期间要严格控制,禁止当地居民在泄漏点下游河段取水灌溉。由于这种情形是突发的、短暂的,不会对产生明显不利影响。

13.2.2 地下水环境影响分析

具体分析见地下水章节。

13.2.3 硫酸储存罐事故性排放影响分析

本项目硫酸运储系统由槽车和储罐组成,该系统的事故隐患主要是事故性 泄漏,运输、贮存和使用三个环节中因操作不当、闸阀失灵、管道破裂、储罐 破损等原因造成硫酸溢出而对环境造成污染、设备腐蚀或人员伤害。若发生泄 漏,可能危害附近的土壤和植被。

在硫酸储罐区设置围堰,有效容积为 10m³, 地面防渗防腐、防渗。当发生硫酸泄漏事故时,应立即采取有效应急措施,对其影响加以控制,降低硫酸泄漏对环境造成的影响。

13.3 风险防范措施

13.3.1 事故性泄漏风险三级防控防范措施

由于事故性泄漏风险具有突发性和影响严重的特点,必须采取措施加以防范,及时控制。为防止事故性排放污染物污染地表水体,矿山应制定风险应急预案以应对事故性泄漏。对事故性泄漏风险建立三级防控体系,即一级防控为车间级、二级防控为矿区级、三级防控为流域级。采取的事故性风险防范措施如下:

一级防控为车间级,主要防控措施为防止富集站发生事故性排放,在富集站设置 1 个事故应急池。发现渗漏,及时处理。收液池地表设排水沟,及时将池体外的汇水排出。池体四周高出地面 0.5m 以上,防止雨水进入其中。

- 二级防控为矿区级,原地浸矿采场下游低洼处按流域设一定数量事故池,原则每个原地浸矿采场设 1 个。母液输送管线每隔一定距离,设置止回阀和泄压孔。
- 三级防控为流域级。主要防控措施为当地下水监测井水质指标超过《地下水质量标准》(GB/T 14848-2017)中的III类水标准时,矿山立即停产,及时上报,及时排查,及时查找原因,及时处理,消除对地表水的影响。

在采取上述事故风险防范措施后,可将事故泄漏风险排放量全部收集至事故池,不会进入到地表水体,从而不会对当地地表水造成明显不利影响。

13.3.2 硫酸储存罐事故性泄漏风险防范措施

(1) 储罐区

硫酸储罐区考虑了完善的硫酸储存系统,具体措施如下:

- ①选用质量合格的管线、储罐等,并精心安装;
- ②合理选用防腐材料,保证焊接质量及连接密封性;
- ③定期检查跑、冒、滴、漏,保持容器完好无缺;
- ④硫酸储罐区设置围堰,有效容积为 10m3,设置事故应池,事故池容积应 大于硫酸储罐最大容积,保持事故池内无杂物和积水;
 - ⑤操作尽可能机械化、自动化,避免发生事故时灼伤人体;
- ⑥操作人员佩戴自吸过滤式防毒面具(全面罩),穿橡胶耐酸碱服,戴橡胶耐酸碱手套;
 - ⑦对设备、管线、泵、阀以及报警监测仪表定期检、保、修:
 - ⑧与易(可)燃物、还原剂、碱类等禁止混储;
- ⑨储罐区保持阴凉、通风,罐体温度应不超过 35°C,相对湿度不超过 85%,考虑当地最高气温夏季最高接近 35°C,给储罐增加防雨防晒棚;

(2) 输送管线

加强对输送管线的定期检查,发现问题及时排查、修复,解决潜在的风险 隐患,确保管道的安全性。管道终端设控制阀,该控制阀能通过输送量来发现 管道是否发生泄漏,具备紧急关闭的功能,一旦发生泄漏能够在最短时间关闭 输送管道,防止污染物的大面积泄漏。泄漏时,启动相应的应急措施,以确保 能够迅速采取合理的防范和补救措施。管线沿途设置警示牌,标明管道内为危

险化学品。

(3) 运输过程

硫酸外购时,使用罐车运送,装罐、运输过程中要注意将强防范措施:

- ①在硫酸的运输、储存过程中必须严格执行《危险化学品安全管理条例》 等有关规定。
- ②硫酸储罐、管道、阀门、酸泵的材质必须符合硫酸储运的要求;运输硫酸的容器材质为耐高、低温、耐硫酸的专门材料,并定期检修和检测。
- ③禁止和其它物质混载;汽车运输应选择交通车辆来往少的道路;车辆发生故障、休息停车时,要选择安全的场所。

13.4 事故应急预案

(1) 组织机构

本项目应急预案体系由组织体制、动作机制、法律基础和保障系统组成。 在体系的建立和实施过程中应对全矿的危险源进行辨识和风险评价,形成全矿 重大危险源清单,对所评价出的重大危险源均应采取相应的控制措施。矿山设 有应急工作领导小组、应急救援队伍。

(2) 事故预防

当地下水监测井水质指标超过《地下水质量标准》(GB/T 14848-2017)中的III类水标准时,及时上报,及时排查,及时查找源头,及时处理。作好应急准备。

如发现富集站池体泄漏、母液管线破损泄漏,及时启动应急程序,事故泄漏的母液及时收集进事故池。

应急救援中心负有接警、报警的责任,并通知有关部门、单位采取相应行动。现场指挥部成立后,指挥权自动转移,由现场指挥部行使指挥权。

(3) 应急响应

应急救援中心接到总指挥命令后,立即通知总指挥部成员到应急救援中心 集中,通知有关抢救抢险队伍立即赶赴事故现场。

总指挥部全体成员接到通知后迅速赶到应急指挥部, 听取事故简要情况介绍, 接受总指挥命令, 分头开始行动。

应急系统启动后, 要求尽快做到应急救援人员到位, 开通信息与通讯网

络,调配救援所需的应急资源,派出现场指挥协调人员赶赴事故现场。

(4) 应急监测

应急监测人员在事件发生后,必须立刻启动应急监测,应急监测由采样人 员在各监测点位进行取样,分析人员在化验室准备仪器设备、药剂。

应急监测人员在监测设备、物资上做好随时应对突发环境事件发生的准备。应急监测成员保证 24 小时通讯畅通,接到指令后 20 分钟内到达现场,同时做好准备。应急监测人员分为外勤工作人员和室内工作人员,外勤工作人员做好安全防护,立即赴事故现场实地勘察,确定事故的类型、监测项目、采样频次,及时反馈信息给室内工作人员,室内人员做好相应的项目分析试剂、分析仪器的预热等准备工作,密切配合。

应急监测成员应充分熟悉所负责的区域、监测点位、监测项目、监测流程,对所属的监测仪器、设备、试剂做到统一管理、及时调用、清晰有数。

应急响应发生时,应依据应急指挥组的响应指令对事故区域进行环境监测,水环境监测主要以 pH、镁、硫酸盐为指标,一旦发现超标严重,应及时上报应急指挥组决定如何采取进一步措施。

现场监测人员应当做好监测记录,包括时间、气温、气压、水温、流速、流量、水位等各环境要素。对采样点的具体位置以及当时的情况作详细描述; 遵循应急监测与现场采样方法,按相关规定采集水样并及时加药保存。

实验室分析人员应当严格按规范认真分析,采取有效的质控措施和手段,保证监测数据的准确可靠,及时上报监测结果以供应急指挥组和相关部门确定进一步应急处置行动。

(5) 信息发布

应急救援中心对发生的安全事故和应急响应的信息实行统一、快速、有 序、规范管理,并以矿安委会名义实施信息发布。

信息发布要遵循及时、主动、客观、准确、规范原则进行,并严格审查、发布程序。

(6) 后期处置

由人力资源科负责组织事故灾难的善后处置工作,包括人员治疗、安置、补偿和工伤鉴别,尽快清除事故影响,妥善安置和慰问受害及受影响人员,财

务科负责征用物资和劳务补偿等事项,保证社会稳定,尽快恢复正常秩序。

矿安委会应全程开展勘察、取证和分析等工作,并应在应急状态解除后整 理和审查所有的应急记录和文件等资料,总结和评价导致应急状态的事故原因 和在应急期间所采取的主要行动,及时作出书面报告。同时,应对救援过程和 应急分队的救援能力进行评估后,及时对应急预案的适宜性和有效性进行修订 和完善。

(7) 保障措施

包括通信与信息保障、应急队伍保障、应急物资装备保障、经费保障、其他保障等。

矿长办公室必须确保应急车辆完好,并确保一名驾驶员 24 小时内有人值班。

技术科、人力资源科、机动科、生产科要按照 GB16423-2006 标准要求, 对本专业的各种图纸资料及时补充完善,确保在救援情况下正确无误。

(8) 培训与演练

人力资源科负责培训工作,应根据预案实施情况每年制定相应的培训计划,采取多种形式对应急有关人员进行应急知识或应急技能培训。培训应保持相应记录,并做好培训结果的评估和考核记录。

安环科每年至少对重大危险源进行一次演练。其他应急功能依实际需求不 定期开展演习。演习前要制定演习计划,演习应保持相应记录,并做好应急演 习评价结果、应急演习总结与演习追踪记录。

(9) 应急预案备案要求

矿山制定的环境风险应急预案应按要求进行备案。

(10) 事故报告制度

对原地浸矿采场、母液输送管线、富集站按时进行巡查,一旦发现事故泄漏预兆、发生事故泄漏时,巡查人员必须第一时间及时上报矿山事故应急管理办公室。事故应急管理办公室根据事故程度和情况及时上报地方事故应急管理部门,及时告知周边的居民,及时采取措施。

13.5 小结

(1) 事故性泄漏包括富集站池体事故泄漏、母液管线破损事故泄漏两种事

故情况,发生泄漏事故情况下, 富集站池体泄漏下, 绝大部分流域不会产生明显不利影响。母液管线泄漏则会对绝大多数周边流域产生明显影响。因此, 应 采取措施防止事故性排放污染物进入周边地下水体中。

- (2) 硫酸储罐存在发生破裂,导致硫酸泄漏的危险。硫酸储罐周边设置围堰,当发生硫酸泄漏事故时,应立即采取有效应急措施,对其影响加以控制,能有效降低硫酸泄漏对环境造成的影响。
- (3)为防止事故性排放污染物污染地表水体,矿山应制定风险应急预案以应对事故性泄漏。对事故性泄漏风险建立三级防控体系,即一级防控为车间级、二级防控为矿区级、三级防控为流域级。

14 施工期环境影响分析

14.1 本项目施工概况

14.1.1 施工主要内容

本项目新建及改建项目,施工期主要任务是分批次建设富集站施工以及首 采矿块的原地浸矿采场施工。施工工程包括原地浸矿工程、环保工程和公辅工 程。地浸矿工程主要是配套建设原高位池、注液孔、集液巷道、导流孔、收液 沟、收液井、监控井、避水沟、排水沟等,以形成原地浸矿生产清污分流、注 液、收液系统。环保工程主要是富集站建设,内配置沉淀富集池、配液池、产 品池、母液中转池、氧化镁浆液池、硫酸池、应急池、尾水处理池等工艺池以 及原材料仓库、产品仓库、配电房、硫酸储罐房、水泵房、污泥暂存间、固体 废物暂存间及办公生活用房等建(构)筑物。公辅工程主要是取水泵房等工 程。

14.1.2 施工场地布置

根据项目总图布置,各工程场地所在位置集中分散程度,将本工程施工场地分为富集站施工区、原地浸矿采场施工区。主要包括富集站施工区、首采原地浸矿采场矿块施工区。

14.1.3 施工工程

首采区包括原地浸矿采场施工,各采场施工工程包括高位池、注液孔、集液巷道、导流孔、收液沟、避水沟、排水沟等。

14.1.4 岩土去向

项目基建土石方工程量主要富集站产生的表土和原地浸矿首采矿块注液系统和收液系统形成的弃土。

根据工程分析,施工期注液孔弃土产生量为 1.82 万 m³,单个注液孔产生弃土量约为 0.05m³,在注液孔附近就近装袋堆存的方式,堆存在注液孔旁边,以便以后回填。采场工程弃土量 1.03 万 m³,堆存到临时弃土场,最终 75%的弃土回填巷道,剩余的 0.26 万 m³堆存,及时采取生态恢复措施。及时采取生态恢复措施。高集站表土剥离量共约 15.04 万 m³,堆存至附近的表土堆存场,最终用于复垦。

14.1.5 施工机械与施工方式

注液孔和集液巷道施工机械主要包括风镐、洛阳铲、锄头、风钻等;水冶车间工程施工机械主要包括:推土机、挖土机、打桩机、钻机、混凝土搅拌机、振捣机、汽车、切割、打磨等。

(1) 注液孔、监控孔施工方式

注液孔施工方式主要为人工施工,施工所用工具为洛阳铲、风钻等。

(2) 集液巷道与导流孔施工方式

集液巷道的施工方式主要为人工施工,施工所用工具为风钻、风镐等,导流孔施工方式为采用千米钻施工。

(3) 建构筑物施工方式

建构筑物施工包括场地平整、地基基础施工、地上建筑、设备安装等工序,主要采用推土机、挖土机、混凝土搅拌机、振捣机、卷扬机、吊车等施工机械。

(4) 管线施工方式

给排水管线施工程序主要包括管沟开挖、夯实处理、管道安装、管沟回 填、水土流失防护措施等程序。

母液收集管线由于主要是地上工程,其施工程序比较简单,主要包括管线架设、管线固定等程序。

14.1.6 施工工期与施工组织

本工程基建期为1年,矿块开采为逐年开采施工,原地浸矿采场施工期一般为2个月。

施工包括施工前期准备、施工准备和施工等三个阶段。

施工前期准备期间完成工作包括组建现场管理机构;编制施工组织设计; 建设用地的征地和实测、定位工作;单项工程的招标和投标;工程地质详勘; 部分施工图设计。

施工准备期间主要完成包括"四通一平"条件和施工所必须的工业设施的准备,使开工后能够连续、快速施工,同时又为施工队伍创造基本的生活环境和居住条件。

施工期主要完成清污分流、注液工程、收液工程、水冶车间等建构筑物的生产系统,同时完成运输、给排水、供电、通讯等系统。

14.1.7 施工队伍与施工营地

各水冶车间,负责母液集中池、除杂池、沉淀池、配药池、给排水设施等施工,原地浸矿区域,负责清污分流工程、注液工程、收液工程、母液输送管线等的施工,施工人员相对较多,各施工区的施工人数相对较少,约20~50人。施工人员主要为当地村庄村民,白天施工、夜间不施工,施工人员的食宿依托当地村庄解决,原则不建施工营房。

14.2 施工期主要污染源及防治措施

14.2.1 环境空气污染防治措施

- (1) 土石方开挖避免在大风天气进行, 完工后及时回填、平整场地;
- (2) 易产生扬尘的建筑材料采用封闭车辆运输;
- (3) 禁止物料高空抛撒,设置围布、挡板,防止运输物料撒落;
- (4)混凝土搅拌机应设在专门的场地内,散落在地上的水泥等建筑材料要经常清理,混凝土搅拌站四周应设置围护结构,并应对施工人员加强劳动保护:
 - (5) 生活炉灶应使用液化气等洁净燃料;
 - (6) 合理选择施工运输路线,车速应适当控制,以减少道路扬尘;
- (7) 散状建材应设置简易材料棚。在天气干燥、风速较大时,易扬尘物料 应采用帆布或物料布覆盖。

14.2.2 环境空气污染防治措施

(1) 泥浆废水处理措施

集液巷道施工中产生的泥浆废水收集后进入集液池、循环用于施工。

(2) 冲洗废水处理措施

原地浸矿采场和富集站的收集池、沉淀池、排水沟等临时性水处理构筑物 先建。一般冲洗废水经沉淀处理后应用于地面洒水、搅拌砂浆等环节;对含油 废水,经隔油处理后,复用于搅拌砂浆、地面洒水等施工环节。

(3) 生活污水处理措施

采用化粪池对施工人员产生的粪便水进行收集,用作农肥。

14.2.3 施工噪声控制措施

(1) 选用低噪声的施工设备、合理安排施工计划

尽量选用低噪音设备,设备要定期维修;安排施工计划时避免同一地点集

中使用过多高噪声设备。

(2) 合理安排运输路线和运输时间;

施工运输车辆,应严格按照规定的运输路线和运输时间进行运输。运输车辆穿过村镇时,要限速行驶,禁止鸣笛。

- (3) 高噪声机械设备操作人员采取轮流工作制,减少工人接触高噪声的时间,并要求配戴防护耳塞;
- (4)建设单位在进行工程承包时,应将有关施工噪声控制纳入承包内容,并在施工和工程监理过程中设专人负责,施工单位应主动接受环保部门的监督管理和检查。

14.2.4 表土及固体废物处置

施工期产生的固体废物主要为清污分流、注液工程、收液工程、富集站建设产生的表土和废弃土石方(岩土)以及施工人员产生的生活垃圾。

注液工程表土装袋, 堆存在注液孔附近, 用于后期复垦; 清污分流、收液 工程剥离表土堆存在临时弃土场; 富集站建设剥离表土堆存在表土堆存场。

施工单位应指派专人负责施工区生活垃圾的收集及转运工作,生活垃圾不得随意丢弃,生活垃圾应及时运往当地环卫部门指定的生活垃圾填埋场处置。

14.2.5 生态保护措施

原地浸矿采场施工禁止砍伐林木,施工中应尽可能减少对林地的占用,减少破坏植被,施工便道、材料堆放场等尽量利用荒地、闲地。

富集站施工前应在四周修建围墙以防止表土扰动后的水土流失,并应根据 总平面布置及早进行绿化以减少裸露地面。

施工中弃土弃渣、废弃的泥浆应及时清理,防止沟渠堵塞;施工中泥土洒落或运输车辆行驶造成沟渠淤塞或水利排灌设施破坏时,应及时清除或恢复。

施工临时占地使用结束后,应由建设单位进行复垦,恢复土地的使用条件,及时归还当地恢复利用。富集站施工结束后应及时绿化。

14.3 施工期环境影响分析

14.3.1 施工期废气环境影响分析

14.3.1.1 主要污染因素

施工活动中,对环境空气的影响因素主要为:

- (1) 注液和收液工程开凿时,挖掘、钻孔、凿岩等产生废气和粉尘;
- (2) 建筑材料运输、卸载产生的扬尘, 土方运输产生的扬尘;
- (3) 临时物料堆场和裸露地产生的风蚀扬尘:
- (4) 混凝土搅拌站产生的水泥粉尘:
- (5) 施工队伍临时生活炉灶排放的烟气。

14.3.1.2 环境空气影响分析

(1) 运输车辆扬尘与尾气

施工需要运进建筑材料、设备等,行驶在施工现场的主要运输通道上的车辆来往频繁,特别在土建施工期产生的扬尘量较大,是影响区域大气环境的最不利时段。施工点具有一定的流动性,每段施工的周期较短,这些不利影响的持续时间也较短。根据有关监测资料,行车道路两侧的扬尘浓度可达 8~10mg/m³,但道路扬尘随离扬尘点的距离增加而迅速下降,影响范围一般在道路两侧 200m 内,对环境空气的影响范围相对较小。

当地村村通公路为硬化水泥路,扬尘较小。故运输车辆扬尘与尾气不会对周围村庄造成明显不利影响。

(2)裸露地面和土石方风蚀扬尘

裸露地面主要是富集站在施工阶段的植被破坏后造成的,在长期干燥无雨及大风天气条件下,裸露地面和堆置的土石方极易产生风蚀扬尘,风蚀扬尘影响范围通常不超过 200m。

(3) 混凝土搅拌站粉尘

混凝土搅拌站加料中产生的水泥粉尘也是施工期的一个主要污染因素。搅拌机加料过程易产生水泥粉尘,水泥粉尘粒径细小,易飞扬,但影响范围相对较小。

(4) 小型生活炉灶

根据类比调查,施工期的施工营地设置小型生活炉灶,以满足生活需要。施工人员较少,生活炉灶采用液化气,生活炉灶排放的主要为油烟。生活炉灶的废气为间歇性排放,废气和污染物排放量均较小,且区域内环境空气的环境容量较大。因此,施工营地生活炉灶的烟气排放对区域环境空气的影响范围和影响程度均较小。

14.3.2 施工期废水环境影响分析

14.3.2.1 主要污染因素

施工期水污染源主要为:

- (1) 收液工程开凿、钻孔产生的泥浆水;
- (2)施工区的冲洗废水,施工机械运转、维修以及生产设备的安装、调试产生的废水;
 - (3) 施工队伍产生的生活污水等。

14.3.2.2 施工期废水环境影响分析

(1) 收液工程施工废水

收液工程主要是集液巷道、导流孔的施工工程,在进行集液巷道施工前, 先进行母液收集池的施工,再进行集液巷道的施工,集液巷道施工过程中产生 的泥浆水全部进入收集池进行简单沉淀后再循环利用于施工作业,因此集液巷 道的泥浆水对地表水影响很小,收液工程施工废水不会对地表水环境造成明显 不利影响。

(2) 冲洗废水

施工中的冲洗废水主要来源于石料等的洗涤及施工机械的冲洗,主要污染物为 SS 和油污等,由于原地浸矿采场施工比较简单,用到的大型施工机械不多,冲洗废水的产生量较少,冲洗废水设置简易沉淀池,沉淀回用。不会明显影响附近地表水体水质。

(3) 生活污水

施工期生活污水主要污染物为 SS、COD、BOD 等。由于原地浸矿采场施工比较简单,施工时人员不多,且施工人员主要来自当地周边村民,不会在施工场地驻扎,因此产生的生活污水量很小。项目区采用化粪池对施工人员产生的粪便水进行收集,用作农肥。

综上所述,该项目施工期废水不会对地表水环境产生明显影响。

14.3.3 施工期噪声环境影响分析

(1) 施工期噪声特征

收液工程施工很多部分是由人工完成,其产生的噪声较小,对外环境影响 小,机械噪声主要是空压机、钻机产生的噪声。

建筑施工土方工程阶段: 主要噪声源是挖掘机、推土机、拌和机、装载

机、水泵以及各种运输车辆。这类施工机械绝大部分是移动性声源,但位移区域较小。噪声排放属间歇性排放,无明显的指向性。

建筑施工基础施工阶段:主要噪声是各种打桩机及风镐等,为移动源。以打桩机为最主要声源,其噪声强度与土层结构有关,时间特征为周期性脉冲噪声。

建筑施工结构施工阶段:使用的设备品种较多,主要声源有吊车等;结构工程设备如混凝土搅拌机、振捣棒、水泥搅拌机和运输车辆等;结构施工一般辅助设备如电锯、摊铺机等,噪声多为机械撞击声。

建筑施工设备安装阶段:一般占总施工时间比例较长,但声源数量较少,主要噪声源包括砂轮机、吊车、切割机等。

(2) 施工期主要噪声源强

经类比调查,确定施工期产噪设备噪声级见表 14.1。

序号	机械设备	测 距(m)	声级[dB(A)]
1	挖掘机	5	91
2	推土机	5	88
3	拌和机	5	87
4	装载机	5	89
5	水泵	5	88
6	搅拌机	5	87
7	电锯	5	95
8	摊铺机	5	84

表 14.1 施工期主要设备及运行噪声源强

(3) 施工期噪声预测

噪声预测是根据施工期已知设备噪声声级计算出评价点的噪声级。鉴于施工噪声的复杂性,以及施工噪声影响的区域性和阶段性,本报告书仅根据《建筑施工场界噪声排放限值》(GB12523-2011),针对不同施工阶段计算出不同施工设备的噪声污染范围。噪声预测模式为:

$$L_i = L_0 - 20\lg(R_i/R_0) - \Delta L$$

式中的Li和Lo分别为Ri和Ro处的设备噪声级;

L为障碍物、植被、空气等产生的附加衰减量。

由预测模式可得出施工过程中各种设备满负荷运行时在不同距离下的噪声 值及影响范围,见表 14.2。

施工阶段	施工机械	限值标准[dB(A)]		影响范围(m)	
旭二別权	加工-7717域	昼	夜	昼	夜
	挖掘机			15.8	/
土石方	推土机	70	55	11.2	/
	装载机			10.0	/
结构	搅拌机	70	55	12.6	/
	拌和机			11.2	/
	水泵			10.0	
	电锯			25.1	/
	摊铺机			7.1	/

表 14.2 施工设备噪声的影响范围

(4) 施工期噪声影响分析

本项目施工安排在昼间,夜间不施工。由表 14.2 可以看出,昼间主要噪声设备影响范围在 70m 以内。

富集站 200m 范围内没有村庄。因此,项目施工不会对周边居民声环境产生明显不利影响。

14.4 施工期环境管理

企业应与施工单位联合组建施工期的环境保护管理机构,其职责是组织实施环保设施的"三同时"和施工引起的各类污染防治,监督和检查工程施工进度和质量。

建设工程筹备处应加强施工监督管理,对施工单位进行经常性的检查,监督施工单位环境保护措施的落实情况,督促、检查施工单位工程竣工后剩余弃土、建筑垃圾等的清运,保证处置和清运率达到100%的要求,发现环境问题及时解决、改正,确保本项目"三同时"制度的贯彻落实。

施工单位应按照《建设项目环境管理办法》等有关法律法规中有关内容,加强施工中的环境管理,制定相应的施工规范、作业制度,并严格执行,尽可能减少或避免施工阶段对区域环境的影响,以促进施工的顺利进行。

综上所述,归纳施工期各项环保措施及其预期效果详见表14.3。

施工期在采取以上措施的同时还应加强外部管理,聘用现代化水平较高、技术装备较好的工程承包单位进行文明施工。

14.5 小结

(1)原地浸矿采场、富集站、管线等施工期间,对区域生态环境的影响较小,不会破坏区域林业生态系统,不会造成林地大量减少。

- (2)施工期的噪声源主要为各类施工机械及车辆的噪声,昼间施工,夜间 不施工,不会影响附近村庄的声环境质量。
- (3)原地浸矿采场和富集站的收集池、沉淀池、排水沟等临时性水处理构筑物先建。施工中产生的泥浆废水经收集池处理后循环用于施工;一般冲洗废水经过澄清处理后应用于地面洒水、搅拌砂浆等环节;对含油废水,经隔油处理后,复用于搅拌砂浆、地面洒水等施工环节;采用化粪池对施工人员产生的粪便水进行收集,用作农肥。因此施工工期的废水源经合理处理后,不会对附近地表水体造成明显不利影响。
- (4)施工过程中废气主要来源于施工机械和运输车辆所排放的尾气,其影响范围和影响程度均有限。
- 总之,施工对环境的不利影响,是阶段性的和局部的影响;所造成的各种不利影响影响程度较轻,随工程施工结束,各种不利影响将随之终止或逐步得到改善和恢复。

表 14.3 施工期环保措施一览表及预期效果

序号	项目名 称	环保设施或措施内容	实施部位	实施时间	保护 对象	实施保证措 施	预期效果
1	施工扬尘防治	(1)土石方开挖避免在大风天气进 行,完工后及时回填、平整场地; (2)易产生扬尘的建筑材料采用封闭 车辆运输; (3)尽量使用液化气等洁净燃料。 (4)优化运输路线、控制运输车速。	(1)材料堆放场周围; (2)表土堆场周围; (3)临时弃土场周围; (4)施工场地及道路; (5)运输车辆。	全部施工期	施工场地周围空 气环境、附近村 庄、施工人员及 周围植被。	(1)建立环境 管理机构, 配备专职或	周围环境空气质量达到 《环境空气质量标准》 (GB 3095-2012)二级 标准。
2	施工废 水处理	集液池、废水沉淀池。	产生污废水的施工场 所附近。	施工准备期	施工场地周围土 壤、施工人员及	兼职环保管 理人员;	土壤、植被水体不受污
3	生活污 水处理	设置化粪池,用作农肥。	施工人员生活区。	施工准备期 全部施工期	周围植被。	(2)制定相关 环境管理条	染。
4	施工噪声防治	(1)选用低噪设备; (2)操作人员采取减少接触时间,戴 防护耳塞等; (3)昼间施工、夜间不施工。	(1)施工场地强噪设 备; (2)强噪设备操作人 员; (3)施工场地。	施工准备期 全部施工期 全部施工期	施工人员。	例、质量管 理规定; (3)环境监理 人员经常检 查、监督并	符合《建筑施工场界环境噪声排放标准》 (GB12523-2011)标准 要求。
5	固体废物处置	(1)表土送表土堆存场进行保护性堆存; (2)弃土送临时弃土场; (3)生活垃圾集中堆放,定期清运。	施工场地。	施工准备期全部施工期	施工场地、周围 空气、土壤及周 围植被。	定期向有关 部门作书面 汇报,发现 问题及时解	符合《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)要求。
6	生态环境保护	合理设计,减少临时占地;严格控制施工区域;管线沿线施工区土地平整,恢复植被。不采伐原地浸矿采场林木。	施工场地边界、临时 占地、管线施工区。	全部施工期	施工场地周围土 壤及植被。	决。	施工场地周边土壤、植 被不被破坏。

15 环境保护措施及其可行性论证

15.1 环保措施概述

南方离子型稀土矿的赋存和开采方式与其他矿体有很大的差别。离子型稀土赋存分散,点多面广,厚度不大,品位较低。每个原地浸矿采场的施工、浸矿、清洗时间共约 1 年,每个原地浸矿采场生产时间较短。考虑上述情况,本评价从设计阶段、施工阶段、生产阶段、闭矿阶段提出全过程环境保护对策措施。

南方离子型稀土矿开采对环境的主要影响是水环境,对于大气环境和声环境影响轻微。开采活动对水环境产生影响的主要原因是采场浸矿母液难以完全收集,通过矿层下部底板的孔隙、裂隙渗漏进入矿块地下水体,并随着地下水迁移。由于本次整合项目地下水与地表水之间的水力联系较为密切,因此,开采行为可能对地下水和地表水环境产生影响。因此,本章将重点阐述水污染防治措施,对大气和噪声环境保护措施适当简化。

15.2 设计阶段环保措施

原地浸矿收液工程设计是原地浸矿污染控制的关键,每个原地浸矿采场在设计阶段必须严格落实如下污染预防措施:

(1) 核实资源储量,确定浸矿剂用量

应由具有勘探资质单位提供生产地质储量报告,明确稀土矿体的空间分布特征,核实离子稀土品位,以确定浸矿剂硫酸镁的合理浓度和用量,避免过度注液。

(2) 开展水文地质勘察和工程地质勘察

查清原地浸矿采场水文地质和工程地质情况,明确矿体底板情况,掌握矿 区地下水的类型、流向、赋存形式以及与地表水之间的补排关系。

(3) 合理布置收液系统

科学合理的进行注液布局和收液设计,结合资源特征、工程条件和水文条件对注液和收液系统进行优化,最大程度的减少母液的渗漏。

15.3 施工阶段环保措施

15.3.1 施工阶段生态保护措施

采场施工中的生态破坏主要发生在清表作业阶段,对地表植被的清理。应 采取以下措施,加强生态保护。

(1) 加强施工管理

制定施工方案,在注液孔的施工中避开林木,禁止对林木的砍伐;施工中应尽可能收缩施工作业面,减少对林地的占用,减少对灌木和草本植被的破坏;施工便道、材料堆放场等尽量利用荒地、闲地。

(2) 采取复绿措施

被破坏灌木主要是当地常见物种,在施工结束后,应采取相应的复绿措施,恢复地表植被。

(3) 防止水土流失

导流孔和巷道施工中弃土弃渣、废弃的泥浆应及时清理,防止沟渠堵塞;施工中泥土洒落造成沟渠淤塞或水利排灌设施破坏时,应及时清除或恢复。

15.3.2 施工阶段其他措施

施工阶段提出如下控制措施:

- (1)每个原地浸矿采场的施工必须严格落实施工环境监理制度,严格按设计施工。
- (2)清污分流措施施工,内部避水沟、外部排水沟视地基情况采用浆砌石或混凝土材料。
- (3)收液隐蔽工程必须组织进行阶段验收(预验收),方可进入下一工序施工。
 - (4) 严格落实地下水监测井、环保回收井的施工。
- (5)原地浸矿采场注液、收液工程施工完成后,必须进行工程验收,工程 验收合格后,方可进入注液工序。

15.4 生产阶段环保措施

15.4.1 清洁生产工艺措施

项目在生产阶段最为显著的环保措施是稀土开采工艺的革新,采用"硫酸镁

浸矿一氧化镁富集"工艺代替"硫铵浸矿一碳铵沉淀"工艺,使稀土开采对环境影响更小,稀土综合回收率更高。

(1) 使用新型镁盐浸矿剂

相比传统原地浸矿工艺,本项目显著优化之一是采用了硫酸镁作为浸矿剂,用来替代传统的硫酸铵浸矿剂。镁盐作为浸矿剂,避免了铵盐的引入。此外,根据现阶段的研究情况,镁盐浸矿剂替代铵盐浸矿的工艺优化措施从环境角度还有如下优势:

- ①根据龙南足洞和定南木子山试验矿块的试验结果,与传统铵盐相比,镁盐浸矿剂对稀土离子的浸出周期相当,浸出率更高,母液中稀土峰值浓度和平均浓度更高,此外,硫酸镁作为浸矿剂可以最大程度将原矿配分中的稀土全配分回收,高价值铽、镝等元素配分比之原矿配分有所增加。
- ②相比于铵根离子,镁离子作为土壤和水体中的常量因子,生物体的必需 元素环境容量更大,根据龙南足洞和定南木子山试验矿块的试验结果,镁盐浸 矿剂对环境影响更小。

(2) 更短、更高效的富集工艺

传统富集工艺采用碳铵除杂和沉淀生产碳酸稀土,而项目采用氧化镁富集工艺,采用氧化镁生产稀土富集物,缩短了生产工序,提高了稀土的回收率,避免了富集环节氨氮的引入。

15.4.2 大气污染防治对策分析

项目采用原地浸矿采矿法,浸矿母液采用沉淀、压滤处理,沉淀、压滤均为带水作业。因此项目无有组织的大气污染排放源,大气污染为无组织排放源。无组织排放源主要是注液孔施工、临时弃土场等产生的无组织排放扬尘。

15.4.2.1 注液孔施工的大气污染防治措施分析

注液孔挖掘、回填复垦和临时堆放会产生无组织扬尘。主要防治措施为注 液孔岩土装袋堆放。此防治措施简单、效果明显,是矿山常用的扬尘防治措施。

15.4.2.2 富集站大气污染防治措施分析

富集站主要大气污染源为物料堆放仓库产生无组织扬尘。防治措施为设置 顶棚、装袋、苫盖。此防治措施简单、效果明显,是常用的扬尘防治措施。

15.4.2.3 临时弃土场扬尘污染防治措施分析

临时弃土场扬尘主要是排土时产生的扬尘和风蚀扬尘,控制措施是:临时 弃土场形成后,做好苫盖、边坡拦挡和导排水,及时恢复植被。

从全国其他矿山的情况看,临时弃土场采取上述措施后能够明显降低临时 弃土场的扬尘。

15.4.2.4 道路扬尘污染防治措施分析

本项目矿区内部的母液输送采用管道输送,最终产品年运输量较小,外运 道路部分利用当地已有的乡村水泥道路。提出的道路扬尘污染防治措施主要 是:限制车速,抑制粉尘的产生;加强对运输车辆装载量的管理,严禁超载。

为减少运输车辆对环境的影响,本次评价要求运输车辆严禁超载并要求运输车辆加盖篷布或使用带盖箱体密封车。限制车速、车辆加盖篷布或使用带盖箱体密封车是常用的道路扬尘治理技术,在矿山使用普遍,效果明显。

本评价认为上述道路扬尘污染防治措施是可行的。

15.4.2.5 无组织排放粉尘防控措施

- (1) 松散物料运输采用密闭车辆运输;
- (2) 尽量避免松散物料露天堆放,确需露天临时堆放时,表面需进行遮 盖,周边设临时拦挡措施。

上述无组织排放粉尘防控措施是目前矿山企业采用的常规措施,效果较明显。评价认为,无组织排放粉尘防控措施可行。

15.4.3 废水污染防治分析

项目运营期废水主要为富集站生产废水、原地浸矿场渗漏无组织排放、原地浸矿场清水清洗尾水、生活污水等。

15.4.3.1 源头削减控制

(1) 避免过度浸矿

根据水文地质条件、工程地质条件和矿产资源储量特征,合理确定浸矿剂用量和浓度,确定浸矿剂的投加程序,防止浸矿剂的过度投入,增大污染源强。

(2) 分区防渗

具体见地下水专题评价报告。

对于原地浸矿工艺来说,做好防渗措施是减少母液渗漏的最主要措施。根据场地水文地质条件和包气带防污性能,结合工程建设设计标准和《环境影响评价技术导则 地下水环境》(HJ 610-2016)的分区防渗要求,可将整个场地分为重点防渗区、一般防渗区和简单防渗区。技改项目分区防渗及要求见表 16 1。

序 号	防渗 分区	建(构)筑物	防渗要求
1	重点防渗区	集液沟底部和外侧壁 硫酸储罐、污泥暂存间 池体:沉淀富集池、配液池、母液中转 池、氧化镁浆液池、产品池、硫酸池、 应急池、尾水处理池等池体	等效黏土防渗层 Mb≥6.0m, 防渗层结构渗透系数 K≤1.0×10 ⁻⁷ cm/s;或参照 GB 18598 执行
2	一般防渗区	内部避水沟 产品仓库 物料仓库	等效黏土防渗层 Mb≥1.5m, 防渗层结构渗透系数 K≤1.0×10 ⁻⁷ cm/s; 或参照 GB 16889 执行
3	简单防 渗区	富集站道路、办公区域	一般地面硬化

表 15.1 地下水污染分区防渗及要求

采场是发生母液渗漏的重要区域,应对注液和收液系统的各设施逐一防渗处理,防渗的做法根据其结构和实际功能有所差异,施工技术参照《渠道防渗工程技术规范》(GB/T 50600-2010),也可以通过铺设防渗篷布实现防渗功能。对于富集站而言,需要进行防渗处理的是各类工艺池体,可以通过铺设防渗篷布实现防渗功能。

根据试验项目对于防渗篷布防渗效果的测定,篷布平均厚度为 0.47mm, 纵向撕破强力 96.6N, 横向撕破强力 127.6N, 垂直渗透系数小于 7.47×10⁻¹³cm/s, 耐静水压 0.5MPa, 具有一定的机械强度和良好的防渗性能, 试验过程中未出现 防渗篷布撕裂和渗漏现象, 效果良好, 满足环保要求。

(3) 清污分流和雨污分流

对采场:采用清污分流的措施,在矿块收液沟的上方设置内部避水沟,将山体地表径流收集入避水沟;在收液沟外部设置排水沟,将雨水和山泉水收集入排水沟;或将集液沟外侧壁设置高于地面 20-30cm,防止外侧雨水进入集液沟。上述措施均可以防止山体的清净径流进入母液收集系统,在稀释母液浓度

的同时, 造成母液收集系统溢流进入地表水体, 造成污染。

对富集站:采用雨污分流措施。在富集站各工艺池体设置溢流导排设施, 防止工艺池体溢流至地表水体造成污染。根据富集站整体的坡度和布局设置雨 水导排设施,防止雨水进入工艺池体或者造成水土流失。

上述措施在其他同类离子型稀土开采项目中均得到有效应用,措施可行。

(4) 采场设置环保回收井和监测井

在采区下游布设环保回收井和监测井,在富集站下游布置监测井,定期监测稀土浓度和水质情况,发现母液及时回抽到母液池中。环保回收井和监测井的数量、规格和位置分布等根据水文地质单元情况确定。

(5) 富集站废水及生活污水利用措施

项目富集池上清液和压滤机压滤水,进入配液池,用于配制浸矿剂,富集站生产过程中各工艺产生的废水全部利用,不外排;

矿山富集站设置化粪池,生活污水经化粪池处理后,用作绿化用水。本项目正常情况废水全部利用,无废水外排。

(6) 清水淋洗及淋洗水回用

为了将矿体中残留的浸矿剂和浸矿母液淋洗下来,最大程度降低上述残留在矿体里浸矿剂在自然环境下的缓释,降低污染源强。在上一个原地浸矿采场收液结束后,采用清水,利用现有的注液和收液设置对已开采矿体进行淋洗。淋洗起点为浸出母液中稀土离子浓度低于 0.1g/L,淋洗终点为淋洗尾水中污染物浓度满足江西省地标《离子型稀土矿山开采水污染物排放标准》(DB36 1016-2018)的要求。

淋洗后的尾水中含有一定量的镁离子和硫酸根离子,可以作为下一个矿块的生产用水,通过水泵将淋洗尾水输送至配液池,用于配制浸矿剂硫酸镁溶液。

根据试验项目的淋洗数据,淋洗周期一般在 30-45 天,即可将淋洗尾水中的硫酸根降至江西省地方标准《离子型稀土矿山开采水污染物排放标准》(DB36 1016-2018)以内,经验证,淋洗措施技术、经济均可行。

(7) 末次淋洗尾水处理

对于最后一个矿体产生的淋洗尾水无可开采的矿块接纳再利用, 此时需要

考虑对尾水进行处理后循环供淋洗使用,直至淋洗尾水中污染物浓度满足江西省地标《离子型稀土矿山开采水污染物排放标准》(DB36 1016-2018)的要求后不再进行处理,最后一批次的达标尾水回用于富集站周边绿化,不外排。

淋洗后的尾水中含有一定量的镁离子和硫酸根离子,将淋洗产生的尾水,少部分直接用于第二批次采场浸矿补充水,最大程度的利用尾水中的硫酸镁等资源,减少浸矿剂的消耗量。大部分尾水经处理后(钙矾石法去除硫酸根和镁)循环利用于原采场清水清洗工序。淋洗终点为淋洗尾水中污染物浓度满足江西省地标《离子型稀土矿山开采水污染物排放标准》(DB36 1016-2018)的要求。无可利用矿块时,最后一批次尾水可以用作临近富集站配液用水,不外排。

淋洗尾水中的主要污染因子为 pH、镁离子、硫酸根离子以及浸矿过程中从矿体中带出的重金属离子。根据试验项目经验,淋洗尾水处理可以采用"中和+化学沉淀"工艺。通过投加生石灰和偏铝酸钠,形成钙矾石沉淀和氢氧化镁沉淀去除淋洗尾水中 pH 值、镁离子、硫酸根离子以及绝大多数的重金属,此外根据水质情况可补充投加适量硫化钠,进一步去除淋洗尾水中的重金属。反应方程如下:

$$H^{+}+OH^{-}\rightarrow H_{2}O$$

$$Mg^{2+}+2OH^{-}\rightarrow Mg(OH)_{2}\downarrow$$

$$SO_{4}^{2-}+Ca^{2+}\rightarrow CaSO_{4}\downarrow$$

$$6Ca^{2+}+3SO_{4}^{2-}+2Al^{3+}+6OH^{-}+9H_{2}O\rightarrow Ca_{6}Al_{2}(SO_{4})_{3}(OH)_{12}\bullet 3H_{2}O\downarrow$$

$$Pb^{2+}+2S^{2-}\rightarrow PbS\downarrow$$

$$2F^{-}+Ca^{2+}\rightarrow CaF_{2}\downarrow$$

在实际生产过程中要根据实际淋洗水中镁离子、硫酸根离子和重金属离子浓度,动态调整投入的中和沉淀药剂的量。"中和+沉淀"处理废水的工艺,属于成熟技术上,是可行的。

根据室内试验的淋洗数据,可将淋洗尾水中的硫酸根降至江西省地方标准《离子型稀土矿山开采水污染物排 放标准》(DB36 1016-2018)以内,经验证,淋洗措施技术、经济均可行。

15.4.3.2 过程监管预警

地表水:每个小流域的地表水流向沿程上布设 2-6 个地表水监测断面,整个矿区建立地表水监测网体系,具体数量、规格和位置分布根据河流、矿块和富集站情况调整确定。监测因子为 pH 值、硫酸盐等特征因子,监测频次为每月一次,及时分析地表水沿程方向变化趋势,在矿区出口处设置预警值,根据特征因子变化趋势提前安排生产计划,调控生产强度。

地下水:每个小流域的地下水流向布设 1-5 口地下水过程监测井,整个矿区建立地下水监测网体系,过程监测井的数量、规格和位置分布等根据富集站和矿块的水文地质单元情况确定。监测因子为 pH 值、硫酸盐、镁等特征因子,监测频次为每月一次,及时分析地下水沿程方向变化趋势,在矿区出口处设置预警值,根据特征因子变化趋势提前安排生产计划,调控生产强度。

15.4.3.3 地下水污染控制措施

具体见地下水专题评价章节

15.4.3.4 环境管理措施

- (1)建立环境监测网:对矿区内外的监测井和河流断面登记造册,建立管理台账。
- (2)加强环境监测:统一尺度和标准,统一监测管理,严格按照监测方案和监测规范,定时取样送检。
- (3) 健全环境管理体系:加强日常环保设施的维护管理,建立环保设施台账;提高现场人员的环境管理水平;建立环境管理制度体系,明确环境管理责任人。

15.4.4 噪声控制措施分析

(1) 富集站噪声控制措施

富集站主要噪声源有:搅拌机、压滤机、空压机和水泵等,均为固定源。 主要控制措施为工艺设计中对产生噪声较大的设备采取降低噪声的措施,如压 滤机设备考虑在基础安装方面采取防振减噪及隔声措施;设备选型时,选择满 足国家噪声标准要求的低噪声设备。采取上述措施后,类比其它同类噪声设备 厂房外的噪声实测值,大体在 70dB(A)以下。

(2) 道路交通噪声控制

合理调度运输车辆作业时间,昼间运输,夜间不运输;加强运输车辆的维护管理,确保运输车辆在最佳工况下行驶。

15.4.5 表土与固体废物处理处置措施

(1) 表土

表土是一种不可多得的自然资源,矿山清基表土送至表土堆场堆存,作为 矿山土地复垦时的土壤重构覆盖材料用,表土堆场采取拦挡等措施防止水土流 失。

(2) 采场岩土综合利用

挖掘注液孔产生的废弃土石方,单个注液孔产生的废石量较少,约 0.05m³,采取装袋就近堆存在注液孔周边,待浸矿完毕后,回填注液孔。

挖掘集液巷道、导流沟产生废弃土石方堆存于临时弃土场,最后回填于池体。

(3) 尾水处理污泥

根据淋洗期污染源分析,淋洗水处理污泥来源于淋洗水处理的混凝沉淀工序,其主要成分是硫酸钙、氢氧化镁、钙矾石和微过量的氢氧化钙。类比赣州稀土无铵工艺试验数据,污泥不具备危险废物浸出毒性和腐蚀性,暂定为一般固废管理并妥善处置。建设单位应按规范建设暂存设施。

(4) 生活垃圾

项目生活垃圾可在车间设置适量的垃圾桶, 收集生活垃圾, 定期用垃圾运输车运至当地环卫部门指定的垃圾处置场进行妥善处置。

15.4.6 事故应急防控措施与合理性

- (1)为防止富集站发生事故性排放,在富集站山脚低凹处设1个事故池, 坡脚设事故排放收液沟,沟底防渗,将事故排放的母液及时收集进事故池。事 故应急池应及时检查防渗膜的完好性,发现渗漏,及时处理。
- (2)原地浸矿采场下游低洼处按流域设一定数量事故池,原则每个原地浸矿采场设1个。
 - (3) 母液输送管线每隔一定距离,设置止回阀和泄压孔。
- (4) 富集站收液池地面设排水沟,及时将池体外的汇水排出。池体四周高 出地面 0.2-0.3m 以上,防止雨水进入其中。

(5)建立完善的硫酸储罐的储存系统;加强对输送管线的定期检查,发现问题及时排查、修复,解决潜在的风险隐患,确保管道的安全性。管道终端设控制阀,具备紧急关闭的功能。泄漏时,启动相应的应急措施。在硫酸的经营、运输、储存过程中必须严格执行《危险化学品安全管理条例》等有关规定。

15.5 闭矿阶段污染控制措施

闭矿阶段, 富集站工艺系统停止运行。原地浸矿工艺对于环境的主要影响在于水环境。开采结束后, 降雨或者其他地表径流会通过注液系统, 进入矿体, 大部分被收液系统收集, 少量渗漏入地下水。在该阶段可以采取的环保措施如下:

(1) 拆除和封堵注液系统

利用堆存在注液孔周边的岩土,封堵注液孔,防止降雨和地表径流进入矿体,减少浸出液的产生量。同时,拆除采场的高位池、浸矿剂管线等注液设施。

(2) 保留和疏浚收液系统和清污分流系统

保留采场收液系统,包括导流孔、集液巷道、集液沟、母液收集池等。对 集液巷道和集液中防渗设施进行检查,定期清理收液沟、内部避水沟中淤积的 泥沙,确保降水和地表径流渗入矿体后,被收液系统有效收集至母液收集池。

建设单位应定期对收集至母液收集池中的降雨尾水进行检测,如有超标现象,则通过"中和+化学沉淀法"处理达标后排放。

(3) 开展地表水和地下水定期监测

定期开展地表水和地下水水质监测,监测点位、监测因子和监测频次等, 见第 19 章。

15.6 服务期满后的环保措施

服务期满后,矿区内水环境基本稳定,主要的环保措施是采场和车间的植被恢复和水环境的跟踪监测。

(1) 富集站复垦

定期对原地浸矿采场尾水水质进行监测,当尾水水质达到排放标准时,停止尾水的收集处理。富集站进行土地复垦工作。复垦措施为将富集站的池体进

行拆除、平整,栽植植被,详见12.5小节。

(2) 原地浸矿采场复垦

原地浸矿采场采用边开采边复垦方案,复垦措施为原地浸矿采场清水清洗结束后,将注液孔周边袋装的岩土回填注液孔,并根据情况栽植植被,详见12.5小节。

(3) 跟踪监测

根据 19 章环境监测计划,定期开展各环境要素的跟踪监测。

15.7 环保投资估算

项目生态恢复投资为 226 万,工程污染防治投资共 654 万元,项目工程总的环保投资为 880 万元。

表 15.2 环保投资估算表

序号	项目	主要环保、生态恢复措施	投资(万 元)
_	大气污染防治		
1	注液孔扬尘	装袋放置在注液孔周边	8
2	临时弃土场扬尘	及时撒播草籽	6
3	表土堆场扬尘	及时撒播草籽	2
	地表水污染防治		
1	生活污水	化粪池	7
2	清水淋洗尾水处理	钙矾石法处理工艺尾水处理池	13
		药剂费、运营费	174
三	地下水污染防控		
1		内部避水沟、外部排水沟	58
2	原地浸矿采场	地下水环保回收井、监测井、截获井等	86
3		集液巷道、导流孔等防渗	174
4	富集站	富集池、配液池、产品池等各种池体防渗	26
5	自朱均	地下水监测井	6
四	固体废物处理处置		
1	集液巷道、集液沟 弃土石方	回填,填方,临时弃土场堆存	6
2	尾水处理污泥	设置污泥暂存间,按照危险废物贮存污染物 控制标准》(GB18597-2001)防渗	14
3	生活垃圾	富集站若干垃圾桶	3
五	噪声污染防治		
1	压滤设备	室内布置,减振措施,隔音操作等	7
2	各类水泵	室内布置,减震措施等	7
六	事故应急		
1	原地浸矿采场	原地浸矿采场地下水流向下游低洼处按流域 设事故池,原则上每个流域原地浸矿采场设1 个	29

序号	项目	主要环保、生态恢复措施	投资(万
2	富集站	在富集站山脚低凹处设1个容积事故池,事	22
		故池容积等于单个最大池体容积	
3	母液管线沿途	母液输送管线每隔一定距离,设置止回阀和	6
3	马似目 线伯述	泄压孔	
七	生态恢复		
1	废弃地生态恢复	未治理废弃地恢复、植被管护	74
2	生态恢复	富集站地面硬化或绿化,在陡坡区域设置相 应护坡工程,车间设排水沟。服务期满后, 对富集站池体进行拆除,并生态恢复。原地 浸矿采场完成采矿后,注液孔封孔,栽植灌 木,林下撒播草籽	152
	A 31	/ / / / / / / / / / / / / / / / / / /	000
十	合计		880

16 放射性影响分析

16.1 监测布点

按照生态环境部办公厅 2020 年 11 月 25 日印发的《矿产资源开发利用辐射环境监督管理名录》,对矿区的原矿、试验母液、试验富集物进行放射性监测,共布设 6 个采样点,见表 16.1。

序号 矿区名称 原矿取样数量 县 试验母液 试验富集物 长城 1 1 全南县 玉坑 1 1 1 2 合计

表 16.1 本项目放射性监测布点

16.2 监测因子与频次

监测项目为: 钍、铀、镭单个核素活度浓度(Bq/g)。 监测 1 次。

16.3 执行标准

《有色金属矿产品的天然放射性限值》(GB 20664-2006): ²³⁸U、²²⁵Ra、 ²³²Th 衰变系中的任一核素≤1Bq/g。

16.4 监测结果

原矿放射性监测结果见表 18.2。由表 18.2 可知,原矿中 ³⁸U、²²⁵Ra、²³²Th 单个核素活度浓度均≤1Bq/g,在《有色金属矿产品的天然放射性限值》(GB 20664-2006)规定的标准限值范围内。

试验母液放射性监测结果见表 18.3。由表 18.3 可知,试验母液中 ³⁸U、 ²²⁵Ra、²³²Th 单个核素活度浓度均≤1Bq/g,在《有色金属矿产品的天然放射性限值》(GB 20664-2006)规定的标准限值范围内。

稀土富集物放射性监测结果见表 18.4。由表 18.4 可知,稀土富集物中 ³⁸U、²²⁵Ra、²³²Th 单个核素活度浓度均≤1Bq/g,在《有色金属矿产品的天然放射性限值》(GB 20664-2006)规定的标准限值范围内。

综合以上分析,本项目原矿、试验母液及稀土富集物 ⁸U、²²⁵Ra、²³²Th 单个核素活度浓度均≤1Bq/g,不需编制辐射环境影响评价专篇。

17 政策规划符合性分析

17.1 产业政策符合性分析

17.1.1 与《国务院关于促进稀土行业持续健康发展的若干意见》的符合性分析

根据国务院《国务院关于促进稀土行业持续健康发展的若干意见》(国发 [2011]12 号,2011.5.10) 文件要求:深入推进稀土资源开发整合。国土资源部要会同有关部门,按照全国矿产资源开发整合工作的整体部署,挂牌督办所有稀土开发整合矿区,深入推进稀土资源开发整合。严格稀土矿业权管理,原则上继续暂停受理新的稀土勘查、开采登记申请,禁止现有开采矿山扩大产能。

本项目为赣州稀土矿山整合(二期)工程,包括宁都县、赣县、信丰县、安远县、全南县及寻乌县共 6 个县的稀土矿权整合。6 个县的稀土整合工作已纳入《江西省矿产资源整合总体方案》,并取得江西省政府以《关于转发江西省矿产资源开发秩序开发整合总体方案的通知》(赣府厅[2007]76 号)同意。本项目包括宁都县、赣县、信丰县、安远县、全南县及寻乌县共 6 个县下属 40 个(宁都县 3 个、赣县 7 个、信丰县 12 个、安远县 11 个、全南县 2 个、寻乌县 6 个)稀土矿山,整合后为 29 个(宁都县 2 个、赣县 7 个、信丰县 7 个、安远县 7 个、全南县 2 个、寻乌县 4 个)稀土矿山,本次开采稀土矿山 17 个(宁都县 1 个、赣县 2 个、寻乌县 4 个)稀土矿山,本次开采稀土矿山 17 个(宁都县 1 个、赣县 2 个、信丰县 5 个、安远县 4 个、全南县 2 个、寻乌县 3 个)。整合前现有矿山全部停产,拆除生产设施。现有矿山总体规模为****t/aREO,整合后由于增加了空白资源区,矿山开采规模为****t/aREO,但现有矿山均不在开采,矿山场地已复绿,不属于现有开采矿山扩大产能。同时该整合项目获得了江西省工业和信息化厅核准批复,核准的稀土矿山 17 个,总产能规模****t/a。

因此,稀土矿山整合(二期)技改项目符合《国务院关于促进稀土行业持续健康发展的若干意见》要求。

17.1.2 与《稀土行业规范条件》(2016年本)符合性分析

2016年6月30日,工业和信息化部发布了《稀土行业规范条件》(工业和信息化部公告2016年第31号),对于稀土行业的规范条件提出以下几个方面的要求,第一、稀土矿山开发应符合国家的法律、法规、产业政策和规划,在生

态保护红线、自然保护区、风景名胜区、饮用水水源保护区以及全国主体功能区划中划定的禁止开发区、限制开发区内,禁止新建、扩建稀土矿山开发项目。第二、离子型稀土矿山企业生产规模应不低于 500 吨/年。第三、离子型稀土矿开发应采用原地浸矿等适合资源和环境保护要求的生产工艺,禁止采用堆浸、池浸等国家禁止使用的落后生产工艺。第四、离子型稀土矿采选综合回收率达到 75%以上,生产用水循环利用率达到 90%以上。

(1) 自然保护地

全南县各稀土矿山距离自然保护地最近的江西梅子山省级森林公园,与玉坑稀土矿直线距离为 261m,矿区与省级森林公园中间有道路和村庄阻隔。玉坑稀土矿废水不会汇入森林公园,矿区不会对江西梅子山省级森林公园产生影响。

项目不在生态保护红线、自然保护区、风景名胜区、饮用水水源保护区以及全国主体功能区划中划定的禁止开发区、限制开发区等需要特殊保护的地区。详见本节"三线一单"分析。

- (2)本项目设计生产规模***t/a,满足离子型稀土矿山企业生产规模应不低于 500t/a。
- (3)本项目采用原地浸矿工艺,未采用堆浸、池浸等国家禁止使用的落后 选矿工艺。
- (4) 本项目采选综合回收率达到 85%以上,满足离子型稀土矿采选综合回收率达到 75%以上。
- (5) 本项目各富集站水循环利用率 92.32%, 满足生产用水循环利用率达到 90%以上。

综上,本项目符合《稀土行业规范条件》的要求。

17.1.3 与《产业结构调整指导目录》(2019年本)符合性分析

《产业结构调整指导目录(2019年本)》中关于稀土采选有如下三类:

鼓励类第三十八项环境保护与资源节约综合利用中第 36 条为"高效、节能、环保采选矿技术":

限制类第七项有色金属中"稀土采选、冶炼分离项目(符合稀土开采、冶炼分离总量控制指标要求的稀土企业集团项目除外)以及稀土二次资源"。

淘汰类第一项落后生产工艺装备中第六款有色金属中第 19 条"离子型稀土矿堆浸和池浸工艺"。

- (1)本项目采用镁盐作为浸矿剂,从源头上消除了稀土原地浸矿环节带来的氨氮污染问题,属于《产业结构调整指导目录(2019年本)》中鼓励类"高效、节能、环保采选矿技术"。
- (2)本项目是中国南方稀土集团赣州稀土矿业公司按照国家稀土开采总量控制指标的建设项目,符合稀土采选限制类除外条件,不属于限制类建设项目。
- (3)本项目采用原地浸矿工艺,不属于淘汰类第一项落后生产工艺装备中第六款有色金属中第19条"离子型稀土矿堆浸和池浸工艺"。

综上,本项目与《产业结构调整指导目录(2019年本)》产业政策要求相符。

17.1.4 与《产业转移指导目录(2018年本)》符合性分析

工业和信息化部发布《产业转移指导目录(2018 年本)》对江西地区产业转移的指导政策有以下要求。

江西省有限承接发展的有色金属产业主要有"稀土材料压延加工;钨、钽、 铌材料压延加工;锂材料压延加工;铜压延加工;硬质合金。"

赣南地区工业发展导向为"赣南经济区包括赣南承接产业转移示范区的赣州,吉安两市。重点发展钨、稀土、电子信息、机电制造、非金属矿及制品、新型玻纤及复合材料、新能源、医药、服装、现代家居、家具及特色农产品深加工等产业。"

本项目位于江西省赣州市,属于稀土产业发展区域;项目采用无铵工艺,提高了稀土资源的回收率,属于有色金属矿的绿色开采。符合《产业转移指导目录(2018年本)》要求。

17.1.5 与《矿产资源节约与综合利用鼓励、限制和淘汰技术目录 (2014年修订)》符合性分析

本项目采用无铵原地浸矿工艺进行稀土矿开采,未采用《矿产资源节约与综合利用鼓励、限制和淘汰技术目录》(国土资发〔2014〕176号)中限制和淘

汰类技术。

本项目符合《矿产资源节约与综合利用鼓励、限制和淘汰技术目录》的要求。

17.1.6 与《关于下达稀土矿开采总量控制指标的通知》符合性

根据《工业和信息化部 自然资源部关于下达 2021 年度稀土开采、冶炼分 离总量控制指标的通知》(工信部联原[2021]123 号),2021 年中国南方稀土集团 有限公司离子型稀土矿产品(折稀土氧化物)总量控制指标为 8500t/a,赣州稀土矿业有限公司作为中国南方稀土集团有限公司的子公司及赣州稀土矿唯一采矿权人,中国南方稀土集团有限公司离子型稀土矿产品(折稀土氧化物)总量控制指标即为赣州稀土矿业有限公司稀土矿产品(折稀土氧化物)总量控制指标,本项目稀土矿产品(折稀土氧化物)产能为 900t/a,满足总量控制指标要求。在实际生产中,赣州稀土矿业有限公司会严格遵守配额指标计划的安排,本项目规模符合稀土配额指标的相关要求。

17.2 规划符合性分析

17.2.1 《稀土行业发展规划(2016-2020年)》符合性

工业和信息化部印发的《稀土行业发展规划(2016-2020 年)》要求推进稀土上游产业绿色转型,对于离子型稀土矿绿色高效开采,提出要求"开展复杂地质条件离子矿浸矿工艺及工程技术研究、浸出液高效回收与循环利用技术及配套设备研究、高效绿色环保浸矿剂及对环境影响评价研究、矿山废水处理及微量稀土高效回收技术开发、新型浸矿模式和生态恢复工程技术开发、矿山开采标准及技术规范研究与制定、离子型稀土原矿绿色高效浸萃一体化技术应用推广,提高稀土回收率,解决矿区水资源污染问题。"对于离子型稀土矿开采指标要求"2020 年离子型稀土矿采选综合回收率达到 85%;稀土行业氨氮排放强度降低 20%"。

本项目为采用无铵浸矿剂,从源头杜绝了浸矿环节的氨氮排放,对于稀土行业降低氨氮排放强度有很大贡献。此外,本项目通过技术和管理革新,可将稀土综合回收率提高至 85%以上。因此,本项目属于离子型稀土矿绿色高效开采,符合《稀土行业发展规划》的要求。

17.2.2 社会经济发展规划符合性分析

2021年2月,江西省人民政府印发了《江西省国民经济和社会发展第十四个五年规划和二 O 三五年远景目标纲要》(赣府发[2021]5号)。规划指出"大力发展铜、钨、稀土及其他有色金属产业,巩固和提升鹰潭铜冶炼和加工基地地位,打造上饶铜冶炼基地、铜加工基地,南昌铜精深加工及研发基地,赣州、九江特色钨产业基地,以及赣州稀土功能性材料及永磁电机产业集群";规划提出"打造鹰潭、南昌、抚州铜基新材料产业基地,赣州中重稀土新材料生产基地,赣州、九江钨基新材料产业基地,新余、南昌钢铁新材料产业基地,京九(江西)电子信息产业带半导体新材料产业基地,南昌、赣州前沿新材料产业基地"。

2021年3月,赣州市人民政府印发了《赣州市国民经济和社会发展第十四个五年规划和二O三五年远景目标纲要》(赣市府发[2021]2号),规划指出"高标准建设中国稀金谷,有序推动稀土矿山复产,大力发展稀土永磁材料及其应用,加快稀土、钨及铜、钴、锡等其他有色金属产业链向后端延伸,提升中重稀土核心竞争力,建设世界级永磁变速器及永磁电机生产基地,将稀土钨等有色金属产业优势转化为可服务国家发展大局和核心利益的战略优势,巩固提升钨产品世界级主产区地位,打造具有国际影响力的稀土钨等有色金属产业集群"。

本项目全南县稀土矿山作为赣州稀土原材料基地,采用无铵浸矿工艺,推动原地浸矿的绿色化、规范化、科学化开采。因此,本项目符合《江西省国民经济和社会发展第十四个五年规划和二 O 三五年远景目标纲要》和《赣州市国民经济和社会发展第十四个五年规划和二 O 三五年远景目标纲要》的要求。

17.2.3 矿产资源规划相容性分析

《全国矿产资源规划(2016-2020年)》中指出"有序开发稀土资源。加强稀土资源调查评价、勘查、开发利用的统一规划和监督管理,优化稀土开发和保护格局,强化稀土国家规划矿区管理,规范勘查开发秩序。建设内蒙古包头、四川凉山、江西赣州等 6 大稀土资源基地,巩固大型稀土企业集团主导的勘查开发和资源配置格局";规划要求"继续实施钨矿、稀土矿开采总量控制制度。建立稀土矿开采消耗储量与新增储量、退出开采能力与新增开采能力动态平衡

机制。到 2020 年,稀土矿开采总量(稀土氧化物 REO)控制在 14 万吨/年";规划要求。

《江西省矿产资源总体规划(2016-2020年)》中指出"规划期间,按照绿色矿业重点发展区的功能定位,实行钨、稀土矿的开采总量控制,到 2020年全省稀土开采指标不超过 1.17 万吨(REO)";规划要求"加快绿色矿山建设和矿山地质环境保护与治理恢复,建立绿色矿业发展示范区,着力发展钨多金属矿精深加工产业和高端稀土新材料及应用产业,打造世界钨都和稀土王国"。

本项目通过对浸矿剂的改进和环保措施的优化,使原地浸矿工艺的污染更少、环境接受度更高;通过对矿区的整合使稀土开采的管理更加有序、开采更加科学,符合绿色矿产建设的产业定位;本项目开采稀土的量符合国家稀土总量指标的要求。本项目建设内容中包含对项目区域废弃矿山的综合治理和生态恢复。因此,本项目符合《全国矿产资源规划(2016-2020 年)》和《江西省矿产资源总体规划(2016-2020 年)》的要求。

17.2.4 环境保护规划符合性分析

《江西省生态环境保护"十三五"规划》突出对生态环境质量的硬约束;以改善环境质量为核心,以解决突出环境问题为出发点,提出了强化源头管理、深入实施"净水、净空、净土"工程、强化环境风险管控、巩固提升生态优势、深化体制改革等七大任务。为支撑《规划》目标任务实现,"十三五"期间实施一批环保重点工程,包括矿山废弃地的修复治理工程"。

《赣州市"十三五"生态建设与环境保护规划》(赣市府发[2017]16号)分析"赣州市主要的超标污染物是氨氮,其次是化学需氧量和生化需氧量。稀土矿山开发、生活污水和农业面源是涉及污染指标的主要排放大户。针对稀土矿山开采,应加强开采新技术和新模式工程建设,同时加强工程建设综合治理废弃稀土矿山。"规划要求"实施赣州市绿色矿山建设工程,针对全市在采矿山,开展绿色矿山建设工作。主要包括建立较完善的绿色矿山标准体系和管理制度,研究制定绿色矿山建设的扶持政策;优化全市矿山总体布局,推进以稀土、钨、萤石为主的绿色矿山建设;加强"三区两线"(重要自然保护区、风景名胜区、居民居住区、重要交通干线、河流湖泊)历史遗留问题废弃矿山生态恢复与综合治理,实现矿山企业与地方和谐发展。"

本项目采用无铵浸矿工艺,对氨氮排放强度的消减有很大贡献。此外,本项目各县稀土矿山已经进行了生态环境综合治理,本次评价对修复效果不好的提出了整改措施。因此,本项目实施符合《江西省生态环境保护"十三五"规划》和《赣州市"十三五"生态建设与环境保护规划》。

17.3 "三线一单"相符性分析

17.3.1 生态保护红线

根据全南县自然资源局出具的复函,全南县玉坑稀土矿、长城稀土矿矿区范围均不在生态保护红线范围内。

17.3.2 环境质量底线

本次评价收集了评价区域的环境空气质量现状数据,开展了地表水、地下水、土壤、底泥、噪声的环境质量现状监测,现状监测结果表明,矿区内的环境空气、底泥、土壤、声环境质量均满足相应质量标准要求,地表水中氨氮超标,超标原因与历史开采有关,地下水中氨氮、pH 值超标,超标与历史开采、原生地质条件及规模化畜禽养殖、农业化肥有关。

整合(二期)技改项目制定了严格的环境保护措施,富集站及原地浸矿采场生产废水全部回用不外排,设置了多级收液系统及地下水监控措施,收液巷道、导流孔、集液沟、母液收集池等均采取了防渗措施,各类固体废物均得到了合理安全处置,制定了施工期及运营期、闭矿期生态保护措施,项目采用无铵浸矿工艺,地下水超标问题可以得到缓解,根据预测结果,项目运行不会对周边环境造成大的影响,不突破环境质量底线。

17.3.3 资源利用上线

本项目对稀土资源的开采指标严格遵循自然资源部、工业和信息化部和江 西省国土资源厅逐层分解下达的稀土矿开采总量控制指标,工程对稀土资源的 利用不会超过资源利用上线。富集站在原有位置新建或改造,生产用水来自周 边地表水体,不突破资源利用上线。

17.3.4 环境准入负面清单

本项目为不属于《产业结构调整指导目录》(2019 年本)限制类及淘汰类,,不属于《江西省产业结构调整导向目录》中的限制类及淘汰类,未列入环

境准入负面清单。

综上,本项目符合"三线一单"要求。

18 环境管理与监测计划

18.1 环境管理

18.1.1 环境管理体系

环境管理是环境保护工作的重要内容之一,也是企业管理的主要组成部分。环境管理的核心是把环境保护融于企业经营管理的过程之中,使环境保护成为工业企业的重要决策因素,重视研究本企业的环境对策,采用新技术、新工艺,减少有害废物的排放,推动员工和公众的环保宣传和引导,树立"绿色企业"的良好形象。

环境管理体系与监测机构的建立能够帮助企业及早发现问题, 使企业在发展生产的同时节约能源、降低原材料的消耗, 控制污染物排放量, 减轻污染物排放对环境产生的影响, 为企业创造更好的经济效益和环境效益, 树立良好的社会形象。

18.1.2 环境管理的机构设置

赣州稀土矿业有限公司已形成完善的环境管理机构。设置有环保部门和专职环境管理人员,负责公司的安全生产、环境管理、环境监测及环保设施的维护,本项目环境管理机构依托公司已有环保部门,设置 1-2 人专职负责本项目的环保工作。其主要职责是:

- (1) 在公司统一领导下,认真贯彻执行有关生产、环境保护的法律、法规和政策规定,具体负责本项目的环保工作:
- (2) 定期组织企业员工安全生产和环境保护教育和培训工作,并做好培训记录和档案资料管理:
 - (3)组织编制安全生产、环境污染等事故应急预案,并组织演练;
- (4) 定期组织召开安全生产和环境保护工作例会,掌握和研究公司安全生产和环境保护的执行情况。查找问题和隐患,及时通报工作情况,整理会议纪要,检查会议有关决议工作的落实:
- (5) 定期组织对各部门、各分(子)公司的环保检查、监督。检查部门、各分(子)公司对环保相关法律、法规、企业规章制度的执行情况及对相关工作的落实情况。对执行制度不严,落实工作不力的部门、分(子)公司,责令

其限期整改,并按规定报公司备案;

- (6)组织对部门、分(子)公司生产和环境保护的年度考核工作,向公司提出考核和奖惩建议;
 - (7) 组织环保先进经验交流和先进技术推广;
 - (8) 参与公司安全、环保"三同时"项目的论证,设计和施工的工作;
 - (9) 深入现场检查,监督并协调解决环保问题;
- (10)按照相关法律、法规的要求,做好安全、环保工作的统计和材料的整理工作,做好安全、环保台账数据、资料的收集、整理和汇总,准确、及时上报各类报表;
 - (11)建立、健全环保体系,做好环保相关档案资料的整理;
- (12)参加环保事故的调查处理,对环保事故的责任进行统计、分析和报告;
- (13)负责做好与安全生产、环境保护等政府部门的沟通联系和协调,配 合做好安全与环保的检查、培训工作;

18.1.3 环境管理计划

本项目应根据其建设进展阶段积极做好各项环境管理工作,具体计划见表 18.1。企业应根据环境管理计划,做好环境管理工作的过程控制。按照公司环境管理体系程序文件,制定并完善本项目环境管理的过程控制文件和过程记录。企业还应结合自身实际,建立健全环境保护管理实施细则,具体建议见表 18.3。建设单位必须明确环境管理任务,并将其列入岗位职责,与其经济利益挂钩,定时检查、考核,确保公司环境管理制度落到实处。

表 18.1 环境管理计划表

阶段	环境管理主要任务内容
项目建 设前期	1.参与建设项目前期各阶段环境保护和环境工程设计方案工作; 2.编制企业环境保护计划,委托环评单位开展项目环境影响评价; 3.积极配合可研及环评单位开展项目区现场踏勘与调研工作; 4.针对项目生产特点,建立健全公司内部环境管理与监测制度; 5.委托设计部门依据环评文件及批复意见,落实工程环保设计,编制环保专 篇
建设期	1.按照工程环保设计,与主体工程同步建设,严格执行"三同时"制度; 2.建立环境监理制度与环保档案,制定年度环境管理工作计划; 3.监督和考核各施工单位责任书完成情况,处理施工中偶发环境污染纠纷; 4.认真做好各项环保设施的施工管理与验收,及时与当地环保行政主管部门沟通

	1.对照环评文件及其批复要求和项目设计文件,核查环保设施落实情况;
77 /D 74 .1/ .	2.检验环保工程运行状况及其效果,要求记录在案,与主体工程同步运行;
环保验收	3.向环保行政主管部门提交申请试生产报告,配合竣工检查和验收;
期	4.组织、配合有资质环境监测部门开展污染源监测,委托有资质单位编制环
	境保护验收报告,组织对工程竣工验收;
	5.总结试运行经验,针对存在及出现问题进行整改,提出补救措施方案
	1.强化管理,申报排污许可证,建立环保设施运行卡,定时检查、维护;
	2.开展定期、不定期环境与污染源监测,发现问题及时处理;
	3.建立健全环境保护档案,负责工厂日常环境保护,并按照国家有关规定及
	时、准确地上报企业环境报表和环境质量报告书
	4.配合公司领导完成环保责任目标,确保污染物达标排放;
	5.强化资源能源管理,实现废物减量化和再资源化,坚持环境污染有效预防
	6.加强有毒危险化学品贮存、使用安全管理,制定危险品和事故源管理条
运行期	例,严格岗位操作规程,编制环境风险事故应急预案;
_,,,,,	7.加强对相关方环境管理,与危险品供应商、危险废物委外处置方签订协
	议,明确包装、运输、装卸等过程安全要求及环保要求;
	8.处理与群众环境纠纷,组织对突发性污染事故善后处理,追查原因并及时
	上报
	9.推行清洁生产审核,环境体系认证,实现企业可持续发展
	10.负责环保宣传与员工培训,提高环保意识教育,提升企业环境管理水
	平,确保实现清洁生产、持续改进
	1.加强污染源监控与管理,提高水资源、能源和一般工业固废的综合利用
环境管理	1.加强行来你血定与自连,旋向小页你、能你和一放工业回放的综合利用 率:
工作重点	2.坚持"预防为主、防治结合、综合治理"原则,强化企业污染防治设施管理
	力度,明确岗位职责,奖罚分明,责任到人;
	3.严格控制生产全过程"三废"排放及危险固废的安全处置,保护环境

表 18.2 环境管理体系清单

实施部门	主要内容
	1.环保法律法规、环境指标与方案管理程序
	2.环境管理体系培训管理程序
	3.原辅材料、能源及给排水设施管理程序
公司	4.废气治理、废水处理、噪声控制治理及工业固废贮存、安全处置管理程序
环保部	5.环保设施管理及违章、纠正与预防污染措施程序
	6.资源化利用监督检查管理程序
	7.环境监控、文件记录控制管理程序与环境管理内部审核程序
	8.产品设计环境影响评审程序
	9.合同方环境行为影响程序与供应商管理程序

表 18.3 环境保护管理制度

实施部门	主要内容
	1.内部环境保护审核、例会制度
	2.环境质量管理目标与指标考核制度
	3.清洁生产管理、环境保护宣传教育与环境保护岗位职责奖惩制度
公司 环保部	4.内部环境管理监督、检查管理制度
	5.环保设施与设备定时检查、保养和维护管理制度
	6.环境保护日常管理中定期、不定期监测制度
	7.环境保护档案管理与环境污染事故管理规定
	8.工业固废贮运、使用管理制度
	9.工业固废收集、临时贮存、处置等管理制度

18.2 监测计划

18.2.1 施工期监测计划

本项目施工期的环境监控在于监督施工期环境管理主要内容的执行情况,以保证施工期环境管理内容全部落实,并确保施工场地邻近地区居民生活不受 干扰。具体监测内容如下:

- (1) 地表水质监测
- ①监测点位:上辽河、黄田江等。
- ②监测时间及频次:施工高峰期监测1次,采样2天。
- ③监测项目: pH、COD、BOD5、氨氮、SS、硫酸盐、石油类、镁。
- (2) 环境空气监测
- ①监测点位: 矿区。
- ②监测时间及频次: 施工高峰期监测 1次, 连续采样监测 1天。
- ③监测项目: TSP、PM₁₀。
- (3) 噪声监测
- ①监测点位:施工场界。
- ②监测时间及频次:选在施工高峰期1次,昼间监测。
- ③监测项目: Leq(A)。

18.2.2 运营期监测计划

- (1) 地表水质监测
- ①监测布点:
- a.监控断面:根据矿区内富集站和采场分布情况以及河流水系情况,每个 出矿区河流均设置 2-6 个过程监控断面,开展污染源监测,主要目的是跟踪监 测水污染物变化趋势,提前预警和调控生产强度。
- b.控制断面:小流域出矿区后的汇水断面设置控制断面,开展污染源监测,主要目的是监测矿区外地表水小流域出口的污染物是否满足江西省地标要求,是否能有效控制污染扩散。
- c.考核断面: 桃江、黄田河开展环境质量监测,主要目的是监测地表水是 否满足水环境质量标准和水环境功能类别。

- ②监测时间及频次:每月一次,当地表水水质出现超标时,超标因子的监测频次加密。
 - ③监测项目: pH、镁离子、硫酸根离子、总硬度、溶解性总固体等。
 - (2) 地下水监测方案
- ①监测布点:按照源头(矿区内采场和富集站)地下水监测井、地下水过程监测井、抽提处理系统地下水监测井来进行。
 - ②监测项目: pH、镁离子、硫酸盐、总硬度、溶解性总固体等。
 - ③监测时间及频次:矿区内采场和富集站下游地下水每月一次;地下水过程监测井每月一次;

矿区外的抽提处理系统地下水每月一次,当地下水水质出现超标时,超标 因子的监测频次加密。

- (3) 噪声监测
- ①监测布点: 富集站厂界。
- ②监测项目: LAeq。
- ③监测时间及频次:每季度1次,夜间生产则应监测夜间噪声。
- (4) 土壤监测
- ①监测布点:每个矿区设置1个表层样,3个柱状样。
- ②监测项目:铜、镍、锌、铅、镉、砷、铬、六价铬、汞、全氮、氨氮、 硫酸盐、全镁、SSC、pH、土壤含盐量。
 - ③监测时间及频次:每年1次。

18.2.3 排污口规范化管理

按照《关于开展排放口规范化整治工作的通知》(环发[1999]24号)的有关规定,对各污染源排放口进行的规范化建设。

(1) 污水排放口、废气排放口和噪声排放源图形标志

污水排放口、废气排放口和噪声排放源图形符号分为提示图形符号和警告图形符号两种,图形符号的设置按 GB 15562.1-1995 执行,对排污口进行编号。

(2) 固体废物贮存(处置)场图形标志

固体废物贮存、处置场图形符号分为提示图形符号和警告图形符号两种,

图形符号的设置按 GB15562.2-1995 执行。

厂区"三废"排放口、排放源及固体废物贮存、处置场处设置明显的环保图 形标志及形状颜色见表 18.4 和表 18.5。

表 18.4 环保图形标志形状、颜色

类别	形状	背景颜色	图形颜色	
提示性图形符号	正方形边框	黄色	黑色	
警告图形符号	三角形边框	绿色	白色	

表 18.5 环保图形标志

序号	提示性图形符号	警告图形符号	排放口及贮存、 处置场
1			污水排放口
2	D((())(()	噪声排放源
3			一般工业固体废物
4			危险废物

18.2.4 监测技术要求及档案管理

(1) 排污口立标

污染物排放口的环保图形标志牌应设置在靠近采样点,并设在醒目处,标 志牌设置高度为其上边缘距离地面约 2m。

重点排污单位的污染物排放口以设置立式标志牌为主,一般排污单位的污染物排放口,可根据情况设置立式或平面固定式标志牌。

(2) 排污口管理

①管理原则

排污口是企业污染物进入环境,污染环境的通道,强化排污口的管理是实施污染物总量控制的基础工作之一,也是区域环境管理逐步实现污染物排放科学化、定量化的重要手段。

具体管理原则如下:

- A.向环境排放污染物的排放口必须规范化。
- B.如实向环保管理部门申报排污口数量、位置及排放的主要污染物种类、数量、浓度、排放去向等情况。
- C.废气排气装置应设置便于采样、监测的采样孔和采样平台,设置应符合《污染源监测技术规范》。
- D.工程固废堆存时,应设置专用堆放场地,并有防扬散、防流失、对有毒有害固废采取防渗漏措施。

②排放源建档

A.本项目应使用《中华人民共和国规范化排污口标志登记证》,并按要求填写有关内容;

B.根据排污口管理内容要求,项目建成投产后,应将主要污染物种类、数量、浓度、排放去向、立标情况及设施运行情况记录于档案。

(3) 环境保护档案管理

安全环保与社会责任部负责项目的环境保护档案管理工作,环保档案实行专人管理责任到人。企业的所有环保资料应分类别整理、分类存档、科学管理,便于统计、查阅。在环境保护档案管理中,应建立如下文件档案:

与本项目有关的法规、标准、规范和区域规划等;项目建设的有关环境保护的报告、设计方案及审查、审批文件;项目环保工程设施的设计、施工、安装的基础资料及验收资料;公司内部的环境保护管理制度、人员环保培训和考核记录;生态恢复工程、污染治理设施运行管理文件;环境监测记录技术文件;所有导致污染事件的分析报告和检测数据资料等。

18.3 "三同时"验收

本次评价按照"分期分区开采,分期分区验收"的原则,由建设单位对技改项目进行自主竣工环保验收。

本次评价建议按照时序,逐年启动,逐年验收,逐年开采,验收内容主要包括:源头削减控制环保措施(富集站和矿块的环保设施),过程监管预警环保措施(沿途监控断面、监测井),末端防控措施(地下水抽提措施)等,考虑到稀土属于总量控制计划生产的资源,每年的开采时序会根据当年的生产任务、稀土总量控制指标、环境影响和环境容量等适当调整优化,每年验收时以实际

启动富集站和首矿块进行验收,在开采期间开展验收,并将环境监理实施方案和环境监理总结报告作为竣工环保验收的文件。

表 18.6 富集站分期验收一览表

验收时间	富集站编号	数量 (个)
第1年	长城-富集站一、长城-富集站二、玉坑-富集站一、玉坑-富集站二	4
第4年	玉坑-富集站三	1
第8年	玉坑-富集站四	1
合计		

表 18.7 环境保护"三同时"验收一览表

环保工程	位置	污染源	主要环保、生态恢复措施	效果评述
上与运油.	原地浸矿采场	注液孔扬尘	装袋放置在注液孔周边	《稀土工业污染物排
		临时弃土场扬尘	做好围挡和导排水工作,及时复垦。	放标准》(GB26451-
		其他无组织	定期清扫道路,车辆密闭运输,松散物料遮盖。原辅料存放于库房	2011)
		沉淀池上清液	在配液池中通过调节 pH 和硫酸镁浓度后,作为浸矿液重复利用。	方案执行率 100%
		压滤液	在配权也不过是例中 pit 相则敌侯你反归,于为汉明 很重要相归。	
地表水污		生活污水	化粪池处理后用于绿化。	方案执行率 100%
地农小石 染防治工 程	富集站	清水淋洗	浸矿顶水结束后开展清水清洗,直到淋洗的尾水硫酸根满足江西省《离子型稀土矿山开采水污染物排放标准》(DB36 1016-2018)要求时,即硫酸盐800mg/L时不再淋洗	江西省《离子型稀土 矿山开采水污染物排 一 放标准》(DB36 1016-
		采场清水清洗尾水	各富集站建设1套尾水处理设施,采用钙矾石法处理工艺,淋洗尾水经处理后全部回用于采场清水清洗工序	2018)
原地浸矿采场、富集站	清污分流		原地浸矿采场设内部避水沟和外部排水沟,富集站设排水沟,满足清污分 流要求	
	分区防渗	集液巷道、导流孔等所有巷道底板均进行防渗漏处理,采用底部水泥硬化 防渗措施; 原地浸矿采场高位池、集液沟、母液收集池,富集站母液中转池、富集 池、配液池、产品池、尾水处理池、事故应急池、污泥间、硫酸储罐等构 筑物采用满足重点防渗区要求的防渗膜防渗(等效黏土防渗层厚度≥6m, K≤1.0×10 ⁻⁷ cm/s 或参照 GB18598 执行)	- 方案执行率 100%	
地下水、			每个富集站下游设置监控井	方案执行率 100%
土壤污染防控措施	矿区及流域	各级地下水井布设	一级(矿块级)监测井: 布设在矿体下游较平坦处 或山体垭口处,根据矿体 开采计划布置。 二级(小流域级)截获井 及监控井: 如第一级(矿块级)收液井实施效果不好,在矿区各小流域出口处,在矿区各小流域出口处设置二级水质截获井及监控井。 上次、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一	_ 按照流域及开采时间 分期执行

赣州稀土矿业有限公司稀土矿山整合(二期)技改项目环境影响报告书—全南县矿区

TT /FI 1FI					
环保工程	位置	污染源	主要环保、生态恢复措施		效果评述
				类标准限值要求。原则上,监测井在某一时	
			三级(大流域级)设置监	刻监测达标后,需再持续监测一个水文年,	
			测井,当发现超标时,在	如果仍未出现超标现象,则可不再进行截	
			监测井上游设置三级(大	获,否则应继续监测并截获。在注液阶段和	
			流域级)截获井	清水清洗阶段的监测每个月3次,在退役后	
			Did-949X7 BASIX71	每1个月监测1次	
	临时弃土场	集液巷道废弃土石 方	75%回填采空区,剩余堆存临时弃土场		
田仕広畑	原地浸矿采场	注液孔废弃土石方	装袋就近堆存在注液孔周边,待浸矿完毕后,回填注液孔		
固体废物			设置污泥间。按照《危险废物	勿贮存污染物控制标准》(GB18597-2001)设计	处理处置率 100%
处理处置	富集站	尾水处理污泥	和建设,基础必须防渗,防渗层渗透系数≤10 ⁻¹⁰ cm/s		
	自朱 均		富集站设若干垃圾桶,集中收集后定期运至当地环卫部门指定场所统一处		
		生活垃圾	理		
	压滤设备 室内布置,减振措施等		《工业企业厂界环境		
噪声污染	会住社	会 住上			噪声排放标准》
防治措施 富集站		^{虽集站} 各类水泵	室内布置,减震措施等		(GB12348-2008) 2
					类标准要求
		采场母液泄漏	原地浸矿采场地下水流向下	游低洼处按流域设事故池,原则上每个流域原	
77 1 ÷ 1 17A	原地浸矿采场	木切		地浸矿采场设1个	(A) (D) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A
环境风险 应急措施		母液管线泄漏	母液输送管线每	隔一定距离,设置止回阀和泄压孔	按照流域及开采时间 分期执行
		在富集站山脚低凹处设1个	容积事故池,事故池容积等于单个最大池体容	7) 7/17/1	
	富集站		积		
<i>∱</i> : 1-1		左	富集站地面硬化或绿化,在	陡坡区域设置相应护坡工程,车间设排水沟。	
生态恢复	车间		服务期满后,对富集站池体进行拆除,并生态恢复		按方案执行
	采场		原地浸矿采场完成采矿局	后,注液孔封孔,栽植灌木,林下撒播草籽 	

19 经济损益分析

环境经济损益分析是环境影响评价估算项目的建设可能造成的环境影响损失以及采取必要的环保措施后可能获得的环境效益,因此,在环境经济损益分析中除需计算用于控制污染所需投资的费用外,同时还要核算可能造成的环境损失和获得的环境经济效益。

本项目的开发会带来显著的经济效益和社会效益的同时,在建设和生产的过程中也存在对周围环境产生一定的不利影响。因此必须从环境经济损益角度对本项目的工程效益进行综合评价才能比较出总的得失。

下面就该项目开发带来的经济效益、社会效益和环境效益进行综合分析,着重分析项目可能造成的环境损失和应采取的必要的环保措施可带来的环境效益,并采用费用—效益分析法对项目开发的环境经济可行性进行评价。

19.1 环境经济损益分析

环境经济效益分析是通过分析计算用于控制污染、生态恢复所需投资费用、环境经济指标,估算可能受到的环境与经济实效,全面衡量项目建设投资在环保经济上的合理水平,反映项目投资的环保经济效益和社会环境效益。

在进行矿山开发和生态环境恢复的投入和产出分析的基础上,提出建立生态恢复资金的保障机制建议。

分析方法采用指标计算方法进行项目的环境经济损益分析。

19.1.1 环保投资

项目总投资 16695.14 万元,环境保护投资估算为 880 万元,占 5.28%。环境保护投资估算见表 15.2。

19.1.2 环境费用

环境费用主要包括环境代价和环境成本二部分。

(1) 环境代价

本项目建设在给当地带来经济、社会效益的同时,也带来环境污染问题,其投产后产生的污染对环境的经济代价按下式估算:

环境代价=A+B

式中: A—排污费;

B—人群健康损失代价。

①排污费(A)

本项目废水零排放、无固定的大气污染物排放、噪声达标排放、临时弃土土场符合 第I类一般工业固体废物贮存、处置场污染控制标准。

按照赣州市人民政府办公厅赣市府办字[2012]209 号文,环保部门征收的排污费按 1000 元/t 混合稀土氧化物标准征收,则矿山投产后,排污收费估算为 90 万元/年。

②人群健康损失代价(B)

本项目污染主要是地下水镁及硫酸盐污染,根据一般情况估计,职工的医疗检查、保健和药物使用的需要,以每年每人 500 元计,全矿职工总人数 48 人,则人群健康损失代价为 2.4 万元/年。

经合计,环境代价为92.4万元/年。

(2) 环境成本

环境成本主要指环境保护工程折旧费和环保工程运行管理费用两项内容。

①环境保护设施折旧费和贷款利率

环保设备设计年限为13年,残值率按5%计,按等值折旧计算,其折旧费为:

$$C1 = \frac{a(1-\beta)}{n}$$

其中: a-环保工程投资费用, 654万元(不含生态、绿化投资);

n-设备折旧年限:

β–残值率。

由上式计算出环保设备折旧费为47.8万元/年。

②环保工程运行管理费用

环保工程运行管理费用主要包括设备维修费、材料消耗费、管理费等。

设备维修费取环保工程投资的 1.5%, 即 13.2 万元/年。

能源材料消耗:主要为水、电、汽等消耗,类比估算为10万元/年。

管理监测费:科研咨询费及环保设备管理费取 10 万元/年。

环保工程运行管理费用总额 33.2 万元/年。

③环境成本

经合计,环境成本为81万元/年。

(3) 环境费用

环境代价为92.4万元/年,环境成本为81万元/年,则环境费用为173.4万元/年。

19.1.3 环境效益

环境效益是指采取环保治理措施获取的直接、间接经济效益。

环保效益指标包括直接经济效益和间接经济效益。

- (2) 拟建工程为节约用水,采取废水回用及综合利用措施,回水用量 13640m³/d,每年总回用水 450万 m³,按当地工业用水收费标准 1元/m³ 计,节约水资源价值 450万元/年;
- (3) 土地复垦、绿化等生态措施的实施带来的相关生态效益约为 50 万元/年(类比计算)。

总环境效益为以上各效益之和,为500万元/年。

19.1.4 环境损益分析

(1) 环保投资占工程建设总投资的比例

环保投资/工程建设总投资 880/16695.14×100% =5.28%。

(2) 环保投资费效比

环保效益与费用比=环保效益/环保费用=500/173.4=2.88。

一般比值大于1或等于1时,认为该项目的环境污染控制、生态保护措施在经济上可行,否则认为是不合理的。本项目的环保投资费效比为 3.16,即环保效益是环保费用的 3.16 倍。因此本项目的环境污染控制、生态保护措施在经济上可行。环境经济各项参数指标汇总见表 19.1。

项目	金额 (万元)	
工程总投资	16695.14	
环保投资	3606.93	
环境代价	92.4	
环境成本	81	
环境费用	173.4	
环境效益	500	
环保效益费用比	2.88	
环保投资占工程总投资(%)	5.28	

表 19.1 环境经济各项参数指标汇总

19.2 经济效益分析

赣州稀土矿山整合(二期)技改项目建设投资 16695.14 万元。项目生产期,年平均利润总额 4471.65 万元,年平均净利润 3353.74 万,可见该项目的投资效益较高。因此从该行业的财务收入来看,本开发项目具有较强的获利能力,投资利润率和内部效益较高,它具有较好的偿还能力及良好的经济效益。

19.3 社会效益分析

本开发项目不仅具有良好的经济效益,同时也具有良好的社会效益:

- (1)项目对所在地区居民收入的影响。项目的实施可给当地居民提供就业机会及带动相关产业发展,由此将会较多的增加当地居民的收入。
- (2)项目对所在地区居民生活水平和生活质量的影响。由于项目的实施提高了当地居民的收入并改善基础设施环境,由此将带动当地居民居住水平、消费水平等生活水平及生活质量的改善和提高。但项目实施会改变当地的环境条件,如相关环保措施不到位,可能引发一定的环境问题。
- (3)项目对所在地区居民就业的影响。本项目预计劳动定员合计 48 人,其中部分为现有人员,部分技术管理人员需要外聘,而大部分生产人员可以在当地招募,通过培训上岗,这将给当地居民提供较多的就业机会。
- (4)项目对当地基础设施、社会服务容量等的影响。在本项目建设后,供电、供排水、通信及道路等都将为当地居民所用,提供便利。
- (5) 该项目投产后,年销售税金为当地政府部门增加了税收,因此具有良好的社会效益。

19.4 小结

环保投资的效益首先表现为能使"三废一噪"达标排放;废水循环利用;固体废物综合利用;厂区绿化、美化得以落实;矿山服务期满后土地得到及时复垦,生态环境走向良性循环;其次从环保投资的经济损益分析可见,环保设施的正常运行将为企业带来一定的经济效益。

本项目建成运营对企业自身收益和促进地方经济发展均发挥了一定的作用,具有明显的经济效益,并为当地农村剩余劳动力提供了一定的就业机会,具有一定的社会效

益。

综合以上社会、经济及环境效益分析,结果表明,该项目具有经济合理性,项目在经济角度上可行;项目社会效益显著,项目具有较好的环境效益,环保设施的运行将污染物排放量控制在允许的限度,同时废物综合利用水平较高,项目在环境经济角度上是可行的。

20 结论

20.1 工程概况

本次整合(二期)技改项目包括全南县 2 个稀土矿山:长城稀土矿、玉坑稀土矿。

矿区总面积约 6.2331km²,全南县整合后矿山保有矿石量为***kt,TREO量为***t,SREO量为***t。设计利用矿石量***kt,TREO量为***t。共建设富集站 6 个,其中 2 个富集站利用现有水冶车间进行改造,其余全部新建,所有富集站分批次错时改造或建设,第一批启动改造并生产的富集站 4 个,其余车间接替式启动建设生产。项目采用无铵工艺,以硫酸镁为浸矿剂,原地浸矿工艺采矿,浸矿母液送至富集站采用氧化镁进行沉淀获得稀土富集物。

20.2 评价区环境质量现状

20.2.1 环境空气质量现状

根据江西省生态环境厅发布的《2020 年江西省各县(市、区) 六项污染物浓度年均值》,项目所在的赣州市全南县 2020 年环境空气质量 SO₂、NO₂、PM₁₀、PM_{2.5}、CO 和 O₃ 六项污染物指标均符合《环境空气质量标准》(GB3095-2012)中二级标准,均为达标区,项目所在地环境空气质量较好。

20.2.2 地表水及河流底泥质量现状

本次评价在各矿区周边的主要溪流布设了 11 个地表水监测断面,监测 pH、高锰酸盐指数、COD、BOD5 等 26 项,监测结果表明,全南县土矿区周边 地表水除氨氮外,其余各监测因子均达到《地表水环境质量标准》(GB3838-2002)中III类水质要求。

本次评价同步监测底泥,监测因子为 pH、Ni、Cu、Zn、Cr、As、Cd、Pb、Hg 共 9 项,监测结果表明,全南县各矿区的底泥全部满足《农用污泥污染物控制标准》(GB 4284-2018)中A级污泥产物的污染物浓度限值要求。

20.2.3 土壤环境质量现状

按照《环境影响评价技术导则 土壤环境(试行)》(HJ964-2018) 规定的布

点原则,本次评价共布设土壤环境质量现状监测点 16 个,其中占地范围内 10 个,占地范围外 6 个,占地范围内柱状样 5 个、表层样 5 个,占地范围外全部 为表层样,其中建设用地监测砷、镉、六价铬、铜等共计 52 项,农用地监测 镉、汞、砷、铅等共计 14 项。监测结果表明,所有农用地点位均未超过《土壤 环境质量标准 农用地土壤污染风险管控标准》(GB15618-2018)中风险筛选值,所有建设用地点位未超过《土壤环境质量 建设用地土壤污染风险管控标准》(GB36600-2018)第二类用地筛选值,土壤环境质量较好。

20.2.4 声环境质量现状

本次评价在典型富集站布设了 5 个声环境质量监测点,监测昼夜噪声,监测结果表明,评价区昼夜噪声均满足《声环境质量标准》(GB 3096-2008)中 2 类声环境功能区标准值要求。

20.3 环境影响分析

20.3.1 地表水环境影响分析

矿山在正常生产情况下,母液处理环节产生的沉淀池上清液、压滤车间压滤废水等全部回收利用,正常情况下矿山生产废水不外排。矿山生产人员较少,不设生活区,仅在倒班宿舍有少量生活污水,在倒班宿舍设置化粪池,生活污水用作农肥和绿化用水,不外排。正常生产过程中不可避免会有极少部分母液渗漏,母液渗漏下渗进入地下水,采场地下水和地表水水力联系紧密,部分地下水通过径流间接汇至采区下游地表水,正常生产过程在确保采场收液系统和环保回收井(水力截获)运行良好情况下,渗漏率可以控制在7.5%以内。

本项目生产用水及生活用水均从矿山附近溪流取水,经过分析,各矿区周边地表水溪流水量充足,水质较好,可满足本项目生产及生活用水需求;渗漏母液进入周边地表水体经完全混合后,全部满足《地表水环境质量标准》(GB3838-2002)III类标准要求,不会对周边地表水环境造成明显不利影响。

20.3.2 生态环境影响分析

项目施工期主要为富集站、管线工程以及其它辅助设施的建设,富集站及辅助设施的建设将使被占用土地利用类型发生改变,草地、林地等转变为工矿用地。这些工程的建设会导致局部景观发生改变,地表植被的铲除或压占将会

改变局部区域内的生态景观类型与格局;同时,区域植被覆盖面积的减少,引起生物量短期内减少;局部地表土壤产生扰动,短期内也会造成一定的水土流失。表土堆存场、临时弃土场的建设可能破坏局部地表植被,相应地引起土壤侵蚀量的增加,剥离的表土堆放和开挖出的土方堆放也会压占地表植被,若堆放区边坡不采取防护措施,可能造成一定的水土流失。

项目运营期原地浸矿采场按计划分矿体进行浸矿,开采完的原地浸矿采场及时复垦,矿山处于不断建设新采场和不断复垦旧采场的过程中,同一时间矿体表面的植被破坏面积相比原地浸矿采场总破坏面积较小。矿山集液巷道建设产生的土方堆放在临时弃土场中。在土方堆积过程中,其土地利用类型也随之发生变化,原来的林地等转变为工矿用地。土方在堆放过程中,若堆放坡度较大且没有采取相应的水土保持措施,则会对下游生态环境产生影响。表土堆存场、临时弃土场的建设可能引起局部区域地表形态的改变,原本的汇水途径也因此受到影响。矿山生产结束后,直接的生态破坏活动将停止。但矿山开采对生态环境造成的破坏影响将持续,为了减轻这种影响,需要开展矿山的土地复垦工作,来逐步恢复矿区生态环境。

项目运营项目共计占用土地面积 16.525hm²。原地浸矿采场主要是开挖注液孔破坏土地,主要破坏的是灌草植被,单个注液孔面积约为 0.025m²,按 2m×2m 的间隔布置注液孔,每公顷土地破坏植被面积约为 0.00625hm²。在原地浸矿完成后,及时对采场开展植被恢复工作,以使土地利用结构能得到一定程度的恢复。每年采场实际破坏土地的面积远远小于占地总面积,通过采场复垦及时工作的开展,各年实际破坏植被面积相对较小。运营期占地为矿块开采临时占用林地等。逐年滚动开采各矿块,均为临时占用。各矿块开采时间约 1年,第 2 年复垦。总体上,对原地浸矿采场采取边开采边复垦的措施情况下,矿山运营期原地浸矿采场的建设对土地利用结构影响较小。

原地浸矿采场分年开采,植被逐步破坏,环评要求运营期原地浸矿采场完成采矿计划后并完成清水清洗后,立即进行复垦工作,恢复地表植被,每年实际的生物损失量将得到一定程度的恢复。

此外,占地范围内多为本地区常见植物种类,没有濒危珍稀野生植物,不会造成濒危珍稀野生植物种群数量的锐减或灭绝。因此,工程对本区域的植物

多样性不会产生显著影响。

运营期主要是原地浸矿采场及设施对评价区内现有的景观生态类型造成影响,原地浸矿采场在建设时只是需要在地表进行打孔作业,布设管道。各注液孔间隔较大,在打孔作业时避开树木;管道可拆除,基本不破坏地表植被,因此原地浸矿采场作业基本上不改变原有的景观类型,并且对原有景观类型影响较小。原地浸矿采场采矿结束后进行复垦工作恢复为原有景观类型;在运营期中,部分原地浸矿采场是处在采矿期,部分是处在复垦期,在同一时间的破坏面积实际上远远小于原地浸矿采场总面积,因此原地浸矿采场对景观格局影响较小。

项目闭矿后,通过采取生态恢复措施,原地浸矿采场参照原土地利用类型,以自然恢复为主,注液孔回填,局部地区补栽灌木,林下撒播草籽。车间最终复垦为林地,表土堆存场和临时弃土场堆存期临时恢复为草地,最终弃土取走后复垦为林地,项目对生态的影响较小

20.3.3 土壤环境影响分析

原地浸矿采场生产不会对采场表层土壤造成不利影响,采取清水清洗措施后,不会造成明显酸化和盐化影响。富集站生产期间采取防渗等环保措施后,正常生产情况下不向周边土壤排放污染物质,不会对土壤造成明显酸化和盐化影响。临时弃土场临时贮存集液巷道和集液沟、母液收集池等施工产生无法回填的废弃土石,但堆存岩土为风化层岩土,并及时对弃土进行复垦,临时弃土场不会对周边环境造成明显不利影响。

20.3.4 环境风险影响分析

事故性泄漏包括富集站池体事故泄漏、母液管线破损事故泄漏两种事故情况,发生泄漏事故情况下,富集站池体泄漏绝大部分流域不会产生明显不利影响。母液管线泄漏则会对绝大多数周边流域产生明显影响。因此,应采取措施防止事故性排放污染物进入周边地下水体中。硫酸储罐周边设置围堰,当发生硫酸泄漏事故时,应立即采取有效应急措施,对其影响加以控制,能有效降低硫酸泄漏对环境造成的影响。为防止事故性排放污染物污染地表水体,矿山应制定风险应急预案以应对事故性泄漏。对事故性泄漏风险建立三级防控体系,即一级防控为车间级、二级防控为矿区级、三级防控为流域级。

20.3.5 声环境影响分析

本项目各富集站基本布置在山坡地带,设备基本相同,厂界距离相差不大,预测结果表明各富集站厂界噪声均达到《工业企业厂界环境噪声排放标准》(GB12348-2008)中 2 类声环境功能区标准(昼间 60dB(A)、夜间 50dB(A))限值要求,评价认为富集站的运行对周边声环境影响不大。

本项目富集站 200m 范围内无声环境敏感目标,不会对敏感目标造成影响。

20.3.6 固体废物影响分析

项目生产期产生的固体废物主要是富集站表土、注液孔和集液巷道开挖产生的废弃土石方、富集站污泥、生活垃圾。挖掘注液孔产生的废弃土石方采取装袋就近堆存在注液孔周边,待浸矿完毕后,回填注液孔;集液巷道、导流沟开挖产生的废弃土石方,最终部分用于回填采空区,剩余无法回填部分堆存于临时弃土场;富集站产生的污泥,类比暂定为一般固废管理并妥善处置。生活垃集中收集后定期运至当地环卫部门指定场所统一处理。

临时弃土场在落实好 GB18599-2020 关于I类场设计、运行管理方面的各项环保要求后,根据国内矿山临时弃土场的运行经验,不会对周围大气、水环境造成明显不利影响。

污泥储存间堆存在室内,室内设置贮渣池,池体及地面采用天然或人工材料构筑防渗层,防渗层为至少 6m 厚黏土层(渗透系数≤10⁻⁷cm/s)或 2mm 厚高密度聚乙烯,或至少 2mm 厚的其它人工材料,渗透系数≤10⁻¹⁰cm/s,不会对周围水环境、土壤环境造成明显不利影响。

20.3.7 环境空气影响分析

本项目的大气污染主要来源于注液孔、临时弃土场等部位产生的无组织扬尘。

- (1) 注液孔施工对环境空气的影响分析
- ①注液孔的开挖采用人工和小型机械操作,但不可避免会产生少量无组织 扬尘。由于当地土壤湿度较大,因此产生的无组织扬尘较少。
 - ②注液孔挖掘出来的岩土装袋堆放在注液孔旁边,堆放期间由于自然风力

作用也会产生一定量的扬尘。由于当地气候湿润多雨,堆放的岩土湿度较大,不会轻易产生扬尘;注液一般 1 年左右就完成,并注液孔回填复垦;原地浸矿采场采用分矿段、分区开采,同时作业的面积较小。岩土的湿度较大,堆放期短,堆放面积较小,因此产生的扬尘较少,不会对大气环境造成明显不利影响。

③在注液孔复垦时,由于表土的翻动,会产生少量扬尘,但是不会对大气 环境造成明显不利影响。

综上所述,注液孔开挖、岩土堆放,以及复垦产生的扬尘不会对周围空气 环境造成明显影响。

(2) 临时弃土场扬尘对环境空气的影响分析

临时弃土场扬尘主要是弃土时产生的扬尘和风蚀扬尘,均属于无组织排放。由于当地多雨湿润,而且临时弃土场面积较小,临时堆存时间约 1 年,因此临时弃土场产生的扬尘很小,其对周边空气环境不会造成明显不利影响。

(3) 其他无组织排放扬尘对环境空气的影响分析

其他无组织排放扬尘主要是松散物料装卸扬尘。类比矿山的经验,松散物料装卸扬尘源强与松散物料的湿度、粒度等有关,一般在 300mg/s~900mg/s,一般采取洒水抑尘措施,抑尘效果可达 75%,抑尘后源强为 75mg/s~225mg/s。通过保持一定的湿度、松散物料露天临时堆放表面进行遮盖等措施,不会对周围环境造成明显影响。

综上所述,项目在生产期中的无组织排放不会对周围环境空气造成明显不 利影响。

20.4 污染防治措施

20.4.1 废气污染防治措施

- (1) 注液孔岩土装袋堆放。
- (2) 富集站物料堆放仓库设置顶棚, 苫盖等防尘措施。
- (3) 临时弃土场形成后,做好苫盖、边坡拦挡和导排水,及时恢复植被。
- (4) 道路扬尘。限制车速,加强对运输车辆装载量的管理,严禁超载;要求运输车辆加盖篷布或使用带盖箱体密封车。
 - (5) 无组织排放粉尘防控措施。松散物料运输采用密闭车辆运输; 尽量避

免松散物料露天堆放,确需露天临时堆放时,表面需进行遮盖,周边设临时拦 挡措施。

20.4.2 废水污染防治措施

(1) 避免过度浸矿

根据水文地质条件、工程地质条件和矿产资源储量特征,合理确定浸矿剂 用量和浓度,确定浸矿剂的投加程序。

(2) 清污分流和雨污分流

采场:采用清污分流的措施,在矿块收液沟的上方设置内部避水沟,将山体地表径流收集入避水沟;在收液沟外部设置排水沟,将雨水和山泉水收集入排水沟;或将集液沟外侧壁设置高于地面 20-30cm,防止外侧雨水进入集液沟。

富集站:采用雨污分流措施。在富集站各工艺池体设置溢流导排设施,防止应工艺池体溢流至地表水体造成污染。根据富集站整体的坡度和布局设置雨水导排设施。

(3) 采场设置环保回收井和监测井

在采区下游布设环保回收井和监测井,在富集站下游布置监测井,定期监测稀土浓度和水质情况,发现母液渗漏及时回抽到母液池中。环保回收井和监测井的数量、规格和位置分布等根据水文地质单元情况确定。

(4) 富集站生产废水及生活污水利用措施

项目富集池上清液和压滤机压滤水, 进入配液池,

在配液池中通过调节 pH 和硫酸镁浓度后,将其输送到高位浸矿液池当做 浸矿液重复利用,不外排;

富集站设置化粪池,生活污水经化粪池处理后,用作绿化用水。

(5) 清水淋洗及淋洗水回用

在上一个原地浸矿采场收液结束后,采用清水,利用现有的注液和收液设施对已开采矿体进行淋洗。淋洗起点为浸出母液中稀土离子浓度低于0.1g/L。

淋洗后的尾水中含有一定量的镁离子和硫酸根离子,将淋洗产生的尾水,少部分直接用于第二批次采场浸矿补充水,最大程度的利用尾水中的硫酸镁等资源,减少浸矿剂的消耗量。大部分尾水经处理后(钙矾石法去除硫酸根和

镁)循环利用于原采场清水清洗工序。淋洗终点为淋洗尾水中污染物浓度满足 江西省地标《离子型稀土矿山开采水污染物排放标准》(DB36 1016-2018)的要求。无可利用矿块时,最后一批次尾水可以用作临近富集站配液用水,不外排。

(6) 地表水末端防控措施

设置两道末端防控措施:第一道富集站下游尾水处理设施:本项目 48 个富集站均具备尾水处理功能,在各富集站内均布设尾水处理设施,可以对临近的溪流地表水进行拦截并抽至尾水处理设施,采用中和沉淀法等(如钙矾石法)进行处理,处理至《离子型稀土矿山开采水污染物排放标准》(DB361016-2018)标准后外排或回用到富集站生产工艺中;第二道在各地表水小流域末端进行第二道在各地表水小流域末端进行风险应急,持续监测地表水水质,根据监测结果调整生产强度,风险条件下将超标的地表水抽回富集站处理。

20.4.3 噪声控制措施

(1) 富集站噪声控制措施

为工艺设计中对产生噪声较大的设备采取降低噪声的措施,如压滤机设备 考虑在基础安装方面采取防振减噪及隔声措施;设备选型时,选择满足国家噪 声标准要求的低噪声设备。

(2) 道路交通噪声控制

合理调度运输车辆作业时间,昼间运输,夜间不运输;加强运输车辆的维护管理,确保运输车辆在最佳工况下行驶。

20.4.4 固体废物处置措施

(1) 富集站剥离表土

富集站表土剥离量共为 1.28 万 m3 堆存至附近的表土堆存场,最终表土作为复垦用土。

(2) 注液孔弃土

原地浸矿采场挖掘注液孔产生的废弃土石方共 2.58 万 m³, 采取装袋就近堆存在注液孔周边, 待浸矿完毕后, 回填注液孔。

(3) 集液巷道、导流孔、集液沟等收液系统弃土

在整个生产期,集液巷道、导流沟产生废弃土石方约为 1.46 万 m³, 堆存于

临时弃土场。最终部分约 1.10 万 m³ 回填到采场收液巷道,无法回填的废弃土石方约 0.36 万 m³ 堆存在临时弃土场。

(4) 污泥

清水清洗期,淋洗尾水需要在富集站自行处理后循环淋洗,采用钙矾石法,会产生污泥。本项目清水清洗期,共产生污泥量约为 2970t/a。在仓库内设置污泥储存间,按相关规范对污泥暂存间采取防渗等措施,并妥善处置或综合利用。

(5) 生活垃圾

本项目生活垃圾产生量约为 11.88t/a,集中收集后定期运至当地环卫部门指定场所统一处理。

20.4.5 生态恢复措施

原地浸矿采场:南方离子稀土赋存分散,点多面广,厚度不大,原地浸矿 收液工程设计是原地浸矿污染控制的关键。每个原地浸矿采场的施工、浸矿、 清水清洗时间约 1 年,以后即进入封孔闭矿期。整个项目属于生产阶段,单个 原地浸矿采场属于闭矿阶段。可实现边开采边复垦。原地浸矿采场清水清洗结 束后,将注液孔周边袋装的岩土回填注液孔,并根据情况栽植植被。

富集站: 待富集站服务年限满之后,对池体等构筑物进行拆除,栽植植被进行生态恢复。

20.4.6 环境风险防范措施

- (1) 在富集站山脚低凹处设 1 个事故池,坡脚设事故排放收液沟,沟底防渗,将事故排放的母液及时收集进事故池。事故应急池应及时检查防渗膜的完好性,发现渗漏,及时处理。
- (2)原地浸矿采场下游低洼处按流域设一定数量事故池,原则每个原地浸矿采场设1个。
 - (3) 母液输送管线每隔一定距离,设置止回阀和泄压孔(带插管)。
- (4) 富集站收液池地面设排水沟,及时将池体外的汇水排出。池体四周高 出地面 0.2-0.3m 以上,防止雨水进入其中。
- (5) 建立完善的硫酸储罐储存系统;加强对输送管线的定期检查,发现问题及时排查、修复,解决潜在的风险隐患,确保管道的安全性。管道终端设控

制阀,具备紧急关闭的功能。泄漏时,启动相应的应急措施。在硫酸的经营、运输、储存过程中必须严格执行《危险化学品安全管理条例》等有关规定。

20.5 达标排放与总量控制

矿山不建锅炉, SO₂ 和 NO_x 排放总量为零。矿山生产废水全部利用,不外排。矿山不建生活区,倒班宿舍设置化粪池,生活污水用作农肥和绿化,不外排。本项目无有组织污染源。且废水无组织污染物无国家规定的需总量控制污染物。故本项目无需申请总量控制指标。

20.6 评价总结论

赣州稀土矿业有限公司稀土矿山整合(二期)技改项目符合国家产业政策,工艺技术先进合理,厂址位置符合当地发展规划和环保要求。在采取本评价报告所提出的各项环保措施后,工程所造成的环境空气、地表水、地下水、噪声、土壤环境影响均不超标,生态影响可控,对周边环境影响较小。从环境保护的角度分析,本项目建设可行。

20.7 建议

- (1)建议矿山在施工图设计前应对拟开采矿块进行详细的工程地质和水文 地质勘探,如水文地质条件复杂,必须采取工程措施,确保母液回收率达到设 计指标。如采取措施后,母液收集率达不到设计指标,则不能进行注液开采。
- (2)建立矿区地表水、地下水动态观测网,对地表水、地下水进行动态观测,一旦发现问题,立即解决。
- (3)应在项目正式投产后 3 年内开展环境影响后评价,重点关注矿区地下水、地表水、土壤的环境质量变化情况,全面反映建设项目对环境的实际影响,评估项目环保措施有效性、可能存在的环境问题,为进一步加强过程环境管理提供科学依据。
- (4)建议建设单位根据水文地质条件和周边环境目标优化开采时序和开采规模。建议首先开采矿区中心矿块,逐渐向外围扩展,最后开采边界处矿块。这样可减轻矿区开采对下游和矿区外围地下水的影响。